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EPFL Normative frameworks

o T

Information theoretic Utilitarian
e.g. sparse coding, e.g. recognize objects,
redundancy reduction, chase prey, navigate ...

mutual information ...




=PrL Using deep neural networks as goal-driven models of a system

Model architecture class

>
w o i
- ¥

k’ A >

Vision: object recognition. Yamins & DiCarlo (2016)

Yamins & Hong et al. (2014), Schrimpf &

Kubilius et al. (2018) :-Aja-_ Language: next-word prediction.

@ Audition: speech recognition, speaker & = —— Schrimpfetal. (2021)

sound identification. Kell et al. (2018) Decision making: context-dependent
Somatosentation: shape recognition. choice. Mante & Sussilo et al. (2013)

t!
Zhuang et al. (2017) Proprioception: action recognition.
g Sandbrink et al. (2023)
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Rajalingham*, Issa*, et al. (J/Neuro 2018)
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video courtesy of Kailyn Schmidt, MIT
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EPFL Benchmark

experimental
paradigm experiment

h é Model )

look_at(stimuli)

record(area)
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data v prediction

Neural benchmark

similarity
score

neural predictivity




ePFL Neural alignment = alignment between
stimulus-matched recordings

Brain recordings Model units

stimuli

Neural benchmarks




=PrL
neural predictivity

Brain recordings Model units

stimuli

Neural benchmarks
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neural predictivity

Brain recordings Model units

fit

regression weights

stimuli

Neural benchmarks

correlation predict held-out
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Yamins* Hong*, et al. 2014 Schrimpf*, Kubilius*, et al. 2018



https://www.pnas.org/doi/10.1073/pnas.1403112111
https://www.biorxiv.org/content/10.1101/407007

=Pl Model bullding

a Encoding Decoding
Stimulus Neurons > Behavior

Y

100-ms /

Pixels visual
presentation

Spatial convolution
over image input

——>

Filter

Yamins and DiCarlo, Nat Neuro 2016
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Brain-Score
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:: Brain-Score 100+ brain & behavior benchmarks, 300+ models

e.g. neural predictions for different image sets, distributional alignments such as spatial
frequency, behavioral generalization, ...

www.Brain-Score.org
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=PFL  Recurrent processing in the visual system
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Decoding accuracy (d’)

Control images are = Challenge images
solved quickly require more processing

“face” “car” ”dog"
I I I
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@ time from image onset —_—

Kar et al. 2019



http://www.nature.com/articles/s41593-019-0392-5
https://www.pnas.org/doi/10.1073/pnas.1719397115

o Modeling recurrence: transform feed-forward

networks into recurrent mode

e.g. ResNet-101

Wy Wy HWy by Hwy My Hw, B, B, M, W, Mws Hws Bws Hws Mws Hws Mws Hw, Hw, Hw,
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Transform feed-forward networks into Aa
recurrent models
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e.g. Hg, Zhang, Ren, Sun (CVPR 2016) Liang & Hu (CVPR 2015) Liao & Poggio (arXiv 2016) Tang*, Schrimpf*,
Huang, Liu, van der Maaten, Weinberger (CVPR 2017) Lotter* et al. (PNAS 2018) Nayebi*, Bear*, Kubilius* et al. (NIPS 2018)



https://arxiv.org/abs/1608.06993

=PFL  Modeling recurrence: transform feed-forward
networks into recurrent models: CORnet

Kubi/i:ls*, Schrimpf*, et al. (NeurlPS 2019)



https://arxiv.org/abs/1608.06993

=F*L Recurrent CORnet model: compact architecture
via recurrence
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Kubilius * Schrimpf*, et al. (NeurlPS 2019) CORnet-S Area Circuitry



https://arxiv.org/abs/1608.06993

=PFL  Recurrent model predicts temporal dynamics in IT
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= i.e., when the brain’s IT is fast to
rocess images, CORnet’s IT-
ayer is also fast
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Kar, Kubilius, Schmidt, Issa, DiCarlo (Nature Neuroscience 2019) Kubilius*, Schrimpf*, et al. (NeurlPS 2019)



https://doi.org/10.1038/s41593-019-0392-5
https://arxiv.org/abs/1608.06993
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Maximize agreement

h; +— Representation — h;

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7T and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation kb for downstream tasks.

= Chen et al. 2020
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https://arxiv.org/abs/2002.05709

=F7L Unsupervised models also explain visual brain activity
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= When trained on regular computer vision datasets (top) or developmental data streams
(below, SAYCam), unsupervised models develop brain-like visual representations
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https://www.pnas.org/doi/10.1073/pnas.2014196118

=F7L  Neurons In cortex are topographically organized

Purves, chapter 11
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https://pmc.ncbi.nlm.nih.gov/articles/PMC6573547/pdf/ns004302.pdf

=P Modeling spatial smoothness with a topographic loss

= A spatial loss term leads to brain-like clusters
along the visual ventral stream (V1 to IT) Macaque V1~ TDANN
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https://www.biorxiv.org/content/10.1101/2020.07.09.185116v1
https://www.cell.com/neuron/abstract/S0896-6273(24)00279-4

=r7L Topographic models enable the modeling of causal

Interventions, e.g. micro-stimulation
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=r7L Topographic models enable the modeling of causal

Interventions, e.g. micro-stimulation
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=rrL Topographic models enable the modeling of causal
Interventions, e.g. micro-stimulation

BIOLOGICAL DATA (Afraz et al. 2006)
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=PFL  Synthesis of stimuli for neural population control
- L6 L7
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= |dea: model is fully differentiable, so we can set a desired target neural
activity and update pixels in a way that they elicit the target state
(according to model predictions)
- Bashivan*, Kar*, DiCarlo 2019



http://www.ncbi.nlm.nih.gov/pubmed/31048462

=F7L Model-guided synthesis non-invasively controls
neural activity

= This procedure

works!
= We can
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_ , drive neural
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10 Bashivan*, Kar*, DiCarlo 2019



http://www.ncbi.nlm.nih.gov/pubmed/31048462

=PrL  Generating “exciting” stimuli without a pre-trained

encoding model
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http://www.nature.com/articles/s41593-019-0517-x
https://www.sciencedirect.com/science/article/pii/S0092867419303915

=PrL  Adversarial attacks in computervision

= Models are fooled by small, imperceptible Graffiti
perturbations (white box adversarial attacks) )

» Protection technique: train on adversarial images
“adversarial training” (very costly)

Egyptian Cat Perturbation )
Milou (l3]1,= 0.60) Sleeping Bag

] ‘.‘_ 4:'.",’3' r & n,.’!’

Image from Dapello*, Marques*, et al. (NeurlPS 2021) Szegedy et al. (ICLR 2014)
- Eykholt*, Evtimov*, et al. (CVPR 2018)



https://nips.cc/virtual/2020/public/poster_98b17f068d5d9b7668e19fb8ae470841.html

=L Adversanal attacks on the brain

= Prevalent view: only computational

models are susceptible to
adversarial attacks

= But: can synthesize images that

also fool IT neurons
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https://proceedings.mlr.press/v162/guo22d.html

P71 Adversarial attacks on behavior

= Using a robustified model (trained with adversarial attacks), can
change images in a way that change the decision of humans

Vanilla guide model Robustified guide model

—
o
o

Gap
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Unperturbed
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Perturbation pixel budget (€) [£,-norm]

Gaziv*, Lee*, DiCarlo 2023

Normalized behavioral
disruption [% errors]

o



https://proceedings.neurips.cc/paper_files/paper/2023/hash/d00904cebc0d5b69fada8ad33d0f1422-Abstract-Conference.html

L = L

=PrL  Adversanal attacks on behavior

start Example target categories
Images ‘insect’” ‘primate’  ‘fish’

Gaziv*, Lee*,
DiCarlo 2023



https://proceedings.neurips.cc/paper_files/paper/2023/hash/d00904cebc0d5b69fada8ad33d0f1422-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d00904cebc0d5b69fada8ad33d0f1422-Abstract-Conference.html

=PFL - Metamers

= Model metamers: “stimuli whose activations within a model stage are
matched to those of a natural stimulus”

a . b
Model activations Reference 3
) . . From reference: A [ Reference 2
Input stimulus Example CNN trained on auditory task
P Reference 1
Reference: x (word recognition)
— ‘About”
Word Same class Same class + Reference stimulus
classifier to model to humans Same class to
Oo0oO0OTT—-T= ™o ©®© w2 3= - About ®— .-"s humans
Maodel metamer: x’ 5 2% EgET 2 2 2 S 3E " o Human metamers
% 258 & 2 2an= v

Aoty A T g >| a = L = }I }I >| g 3 11
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M O o o & Q o = , 1
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' odel stages .
!

' (early - late) N— Lm “ K () Model metamers
*a .Jh ’a'
Modify input to match all activations via gradient descent |
(minimize |[A - A" [|/||All)

Space of all possible input stimuli

Feather et al. 2023



https://www.nature.com/articles/s41593-023-01442-0

=PrL
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https://www.nature.com/articles/s41593-023-01442-0

=PFL Adversarial training makes metamers human-recognizable
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https://www.nature.com/articles/s41593-023-01442-0

“P=L Models of auditory processing = Jointly optimize CNN for word +

genre recognition tasks

A Word recognition task Musical genre task
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Kell & Yamins et al. 2018



https://www.sciencedirect.com/science/article/pii/S0896627318302502

=FrL Task-optimized model exhibits human-like behavior
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https://www.sciencedirect.com/science/article/pii/S0896627318302502

=PFL  Task-optimized audio model predicts fMRI responses

[ Trained network (selected architecture, trained filters)
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https://www.sciencedirect.com/science/article/pii/S0896627318302502

=PFL  Model Predicts Hierarchical Organization
in Human Auditory Cortex

B Best-predicting network layer for each voxel = Black outline:

Layer: | conv3 orlower [ convd ] conv5 or higher SUb'diViSionS
of primary
auditory cortex

= Primary
auditory cortex
best explained
by earlier
layers

= Later layers
best explain
non-primary
areas

Kell & Yamins et al. 2018


https://www.sciencedirect.com/science/article/pii/S0896627318302502

=PrL

Take-home messages

Unsupervised training yields brain-like representations

Including a spatial loss term leads to topographic models that reproduce the spatio-
functional organization in the brain. These models can predict the behavioral effects

of neural interventions

Encoding models of brain function allow for the synthesis of images to control neural

activity. Can create images akin to adversarial attacks

Yet, models often view things as identical that appear very different to humans

(metamers)

Very similar ideas from vision work for models of auditory processing
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