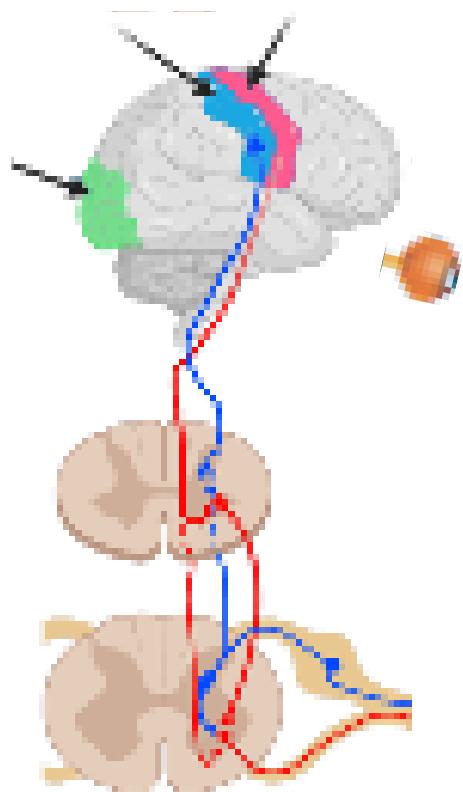
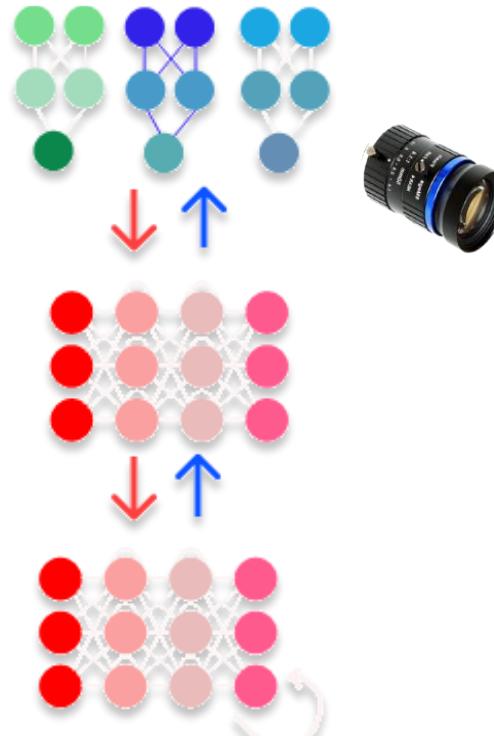
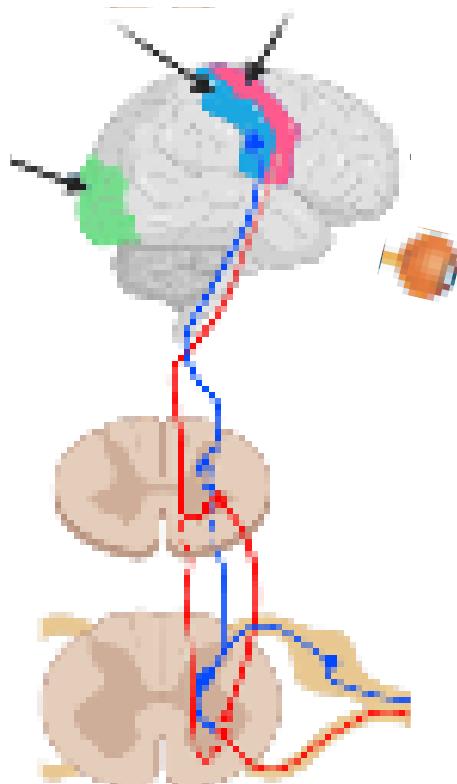


NX-414: Brain-like computation and intelligence

Martin Schrimpf



Normative frameworks

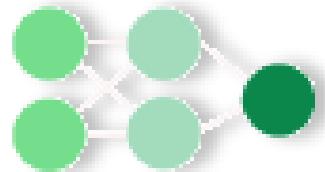


Information theoretic

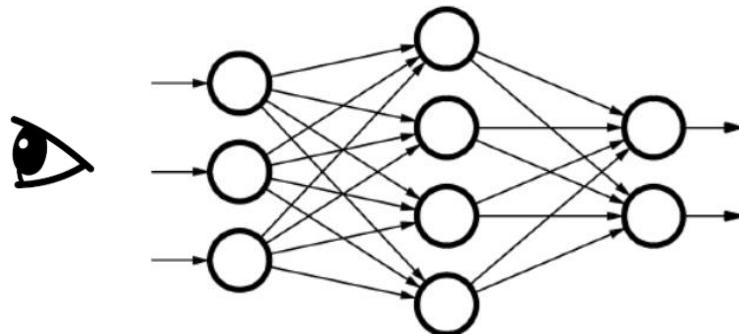
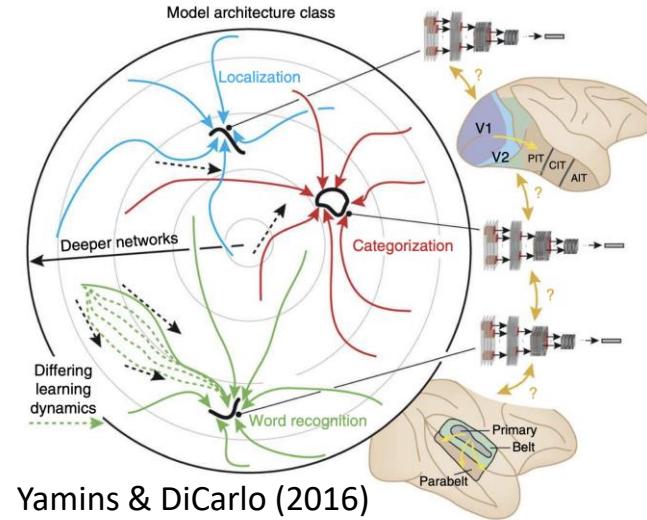
e.g. sparse coding,
redundancy reduction,
mutual information ...

Utilitarian

e.g. **recognize objects**,
chase prey, navigate ...



Using deep neural networks as goal-driven models of a system



Vision: object recognition.

 Yamins & Hong et al. (2014), Schrimpf & Kubilius et al. (2018)

Audition: speech recognition, speaker & sound identification. Kell et al. (2018)

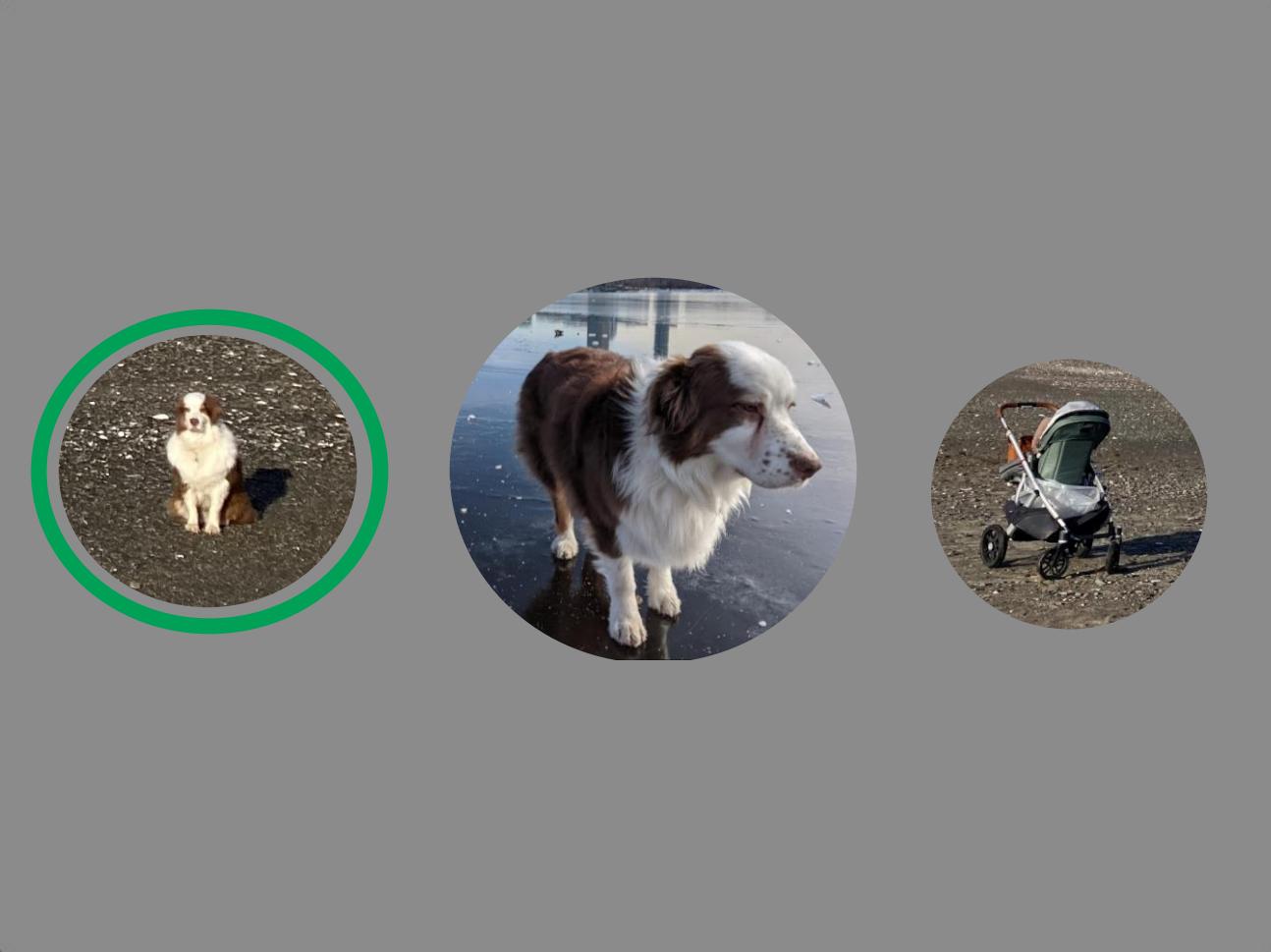
Somatosensation: shape recognition. Zhuang et al. (2017)

Language: next-word prediction.
Schrimpf et al. (2021)

Decision making: context-dependent choice. Mante & Sussillo et al. (2013)

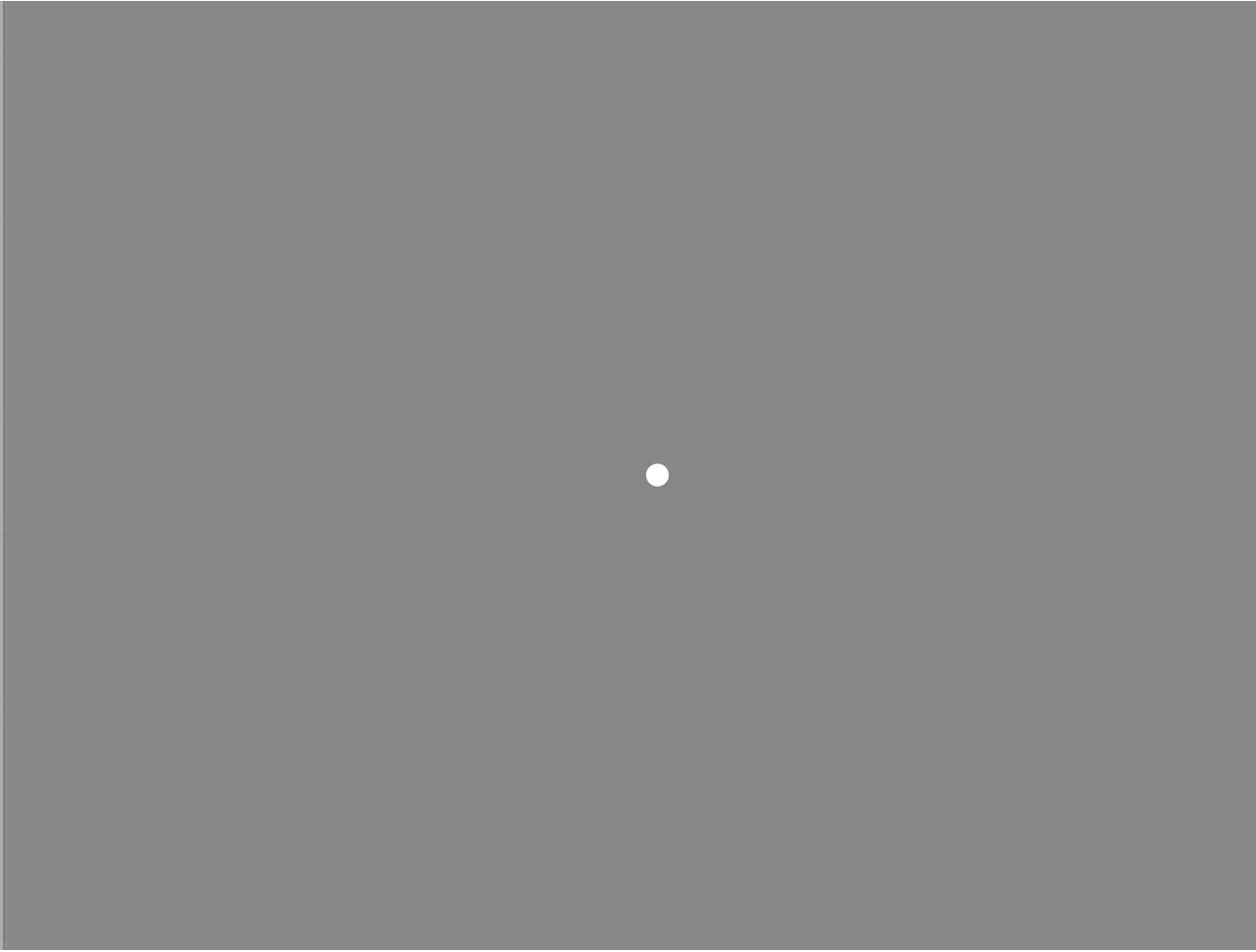
Proprioception: action recognition.
Sandbrink et al. (2023)

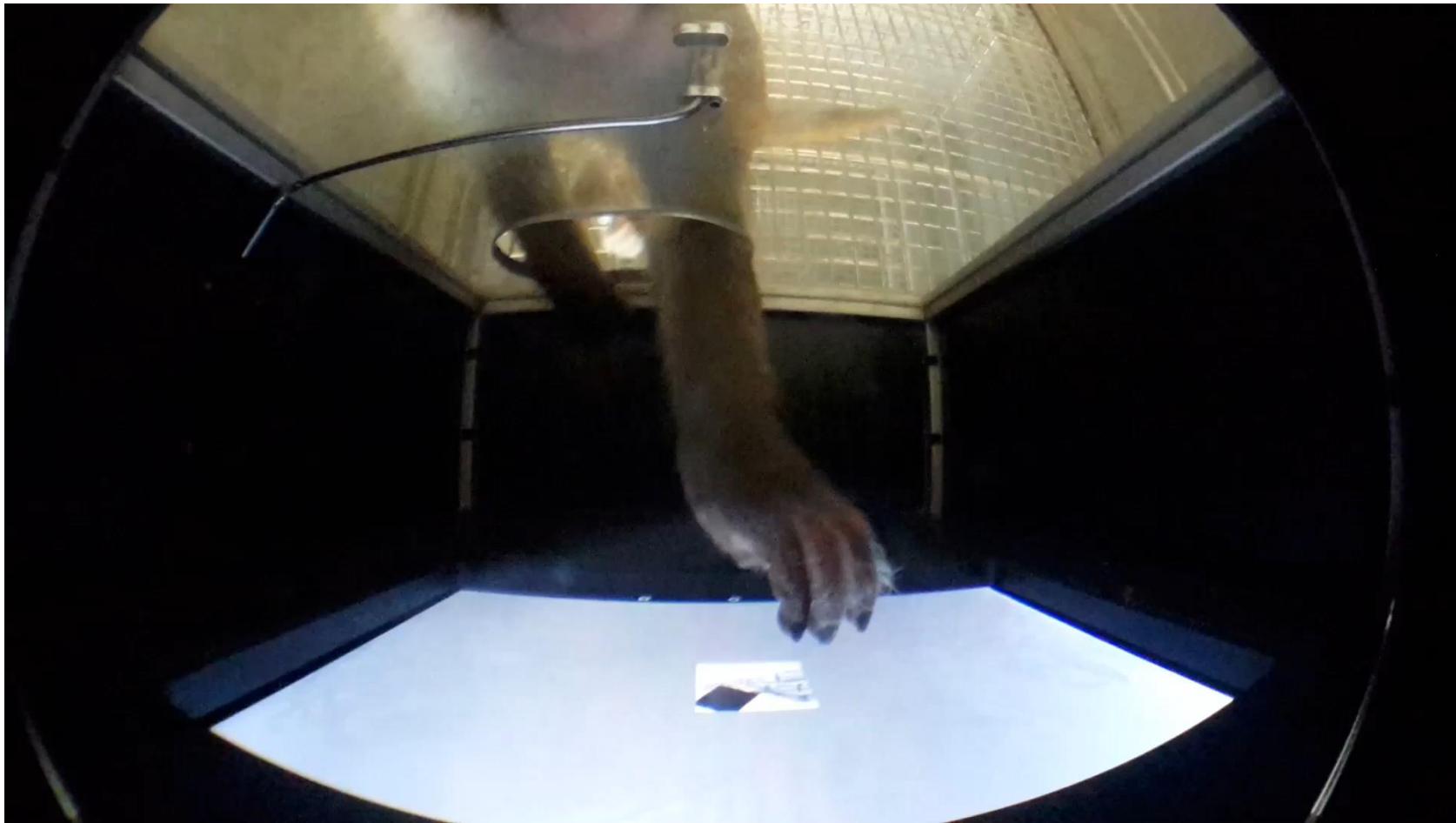
Behavioral experiment



Behavioral experiment

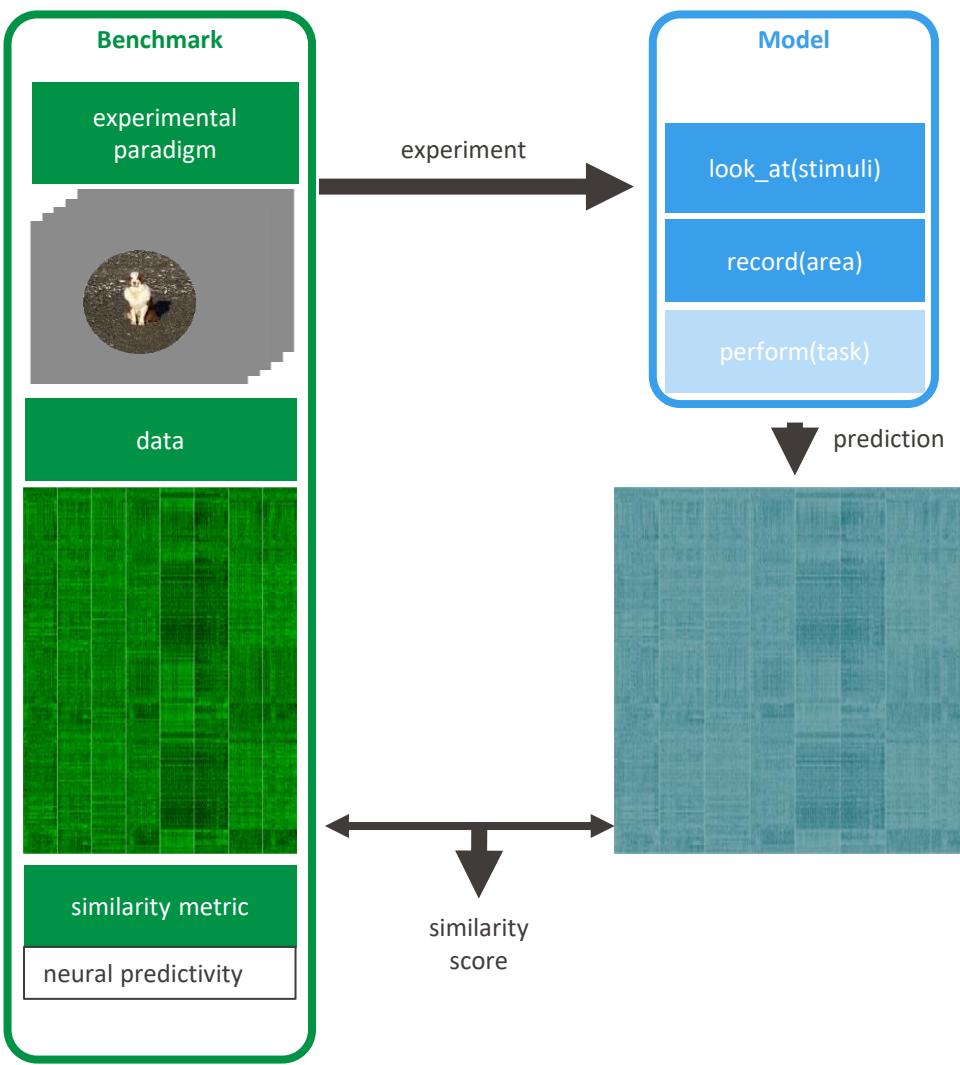
EP





video courtesy of Kailyn Schmidt, MIT

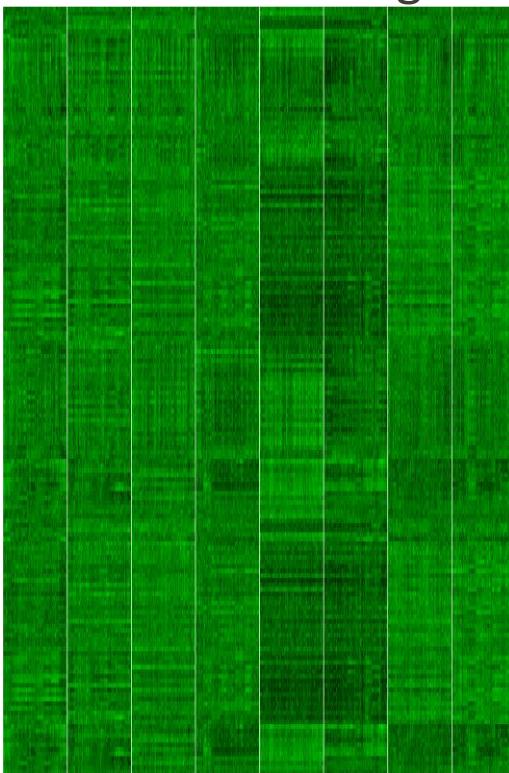
Neural benchmark



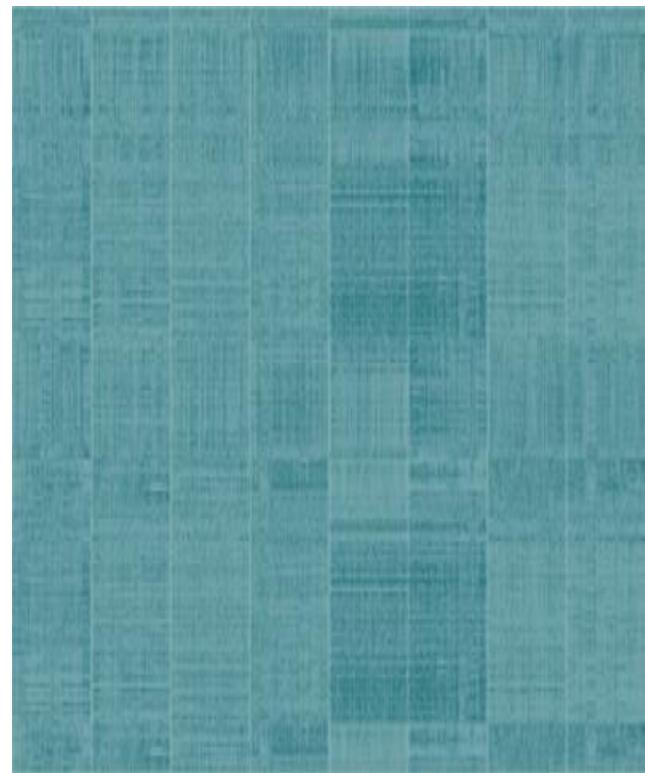
Neural benchmarks

Neural alignment = alignment between stimulus-matched recordings

↑
stimuli
↓

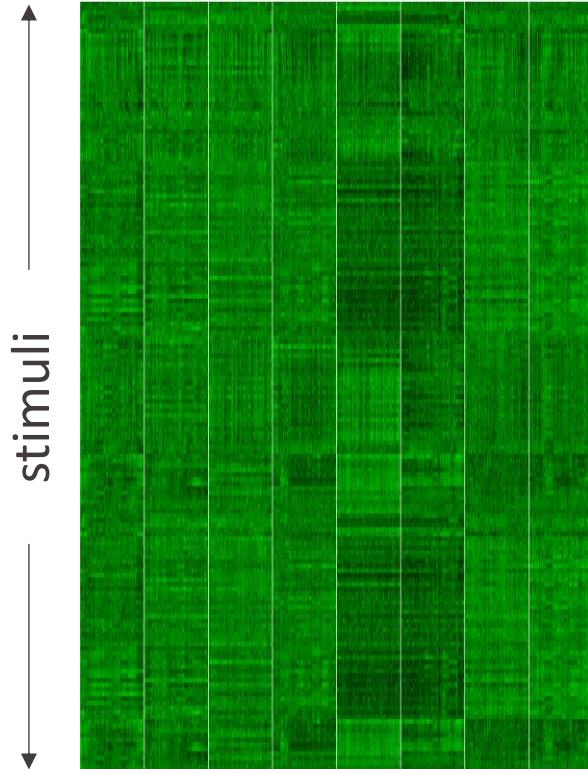


Model units

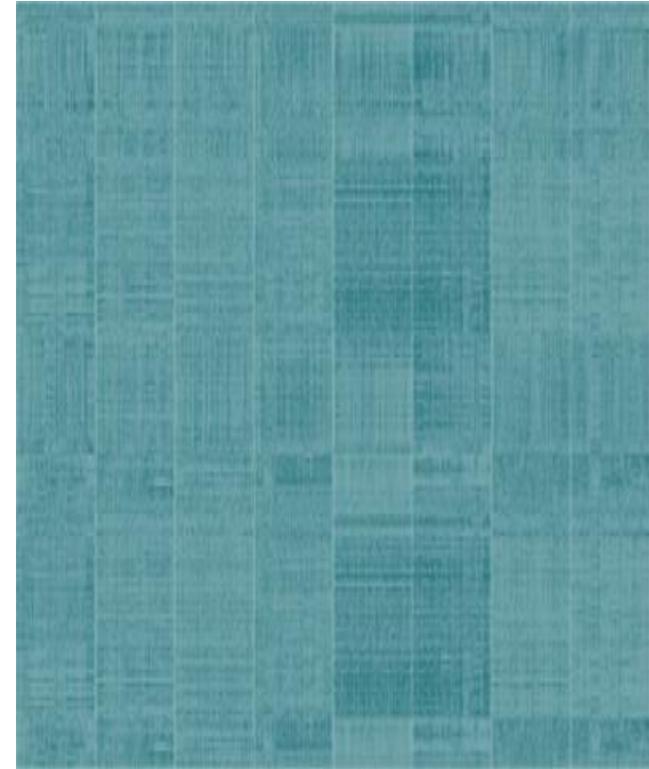


Neural benchmarks

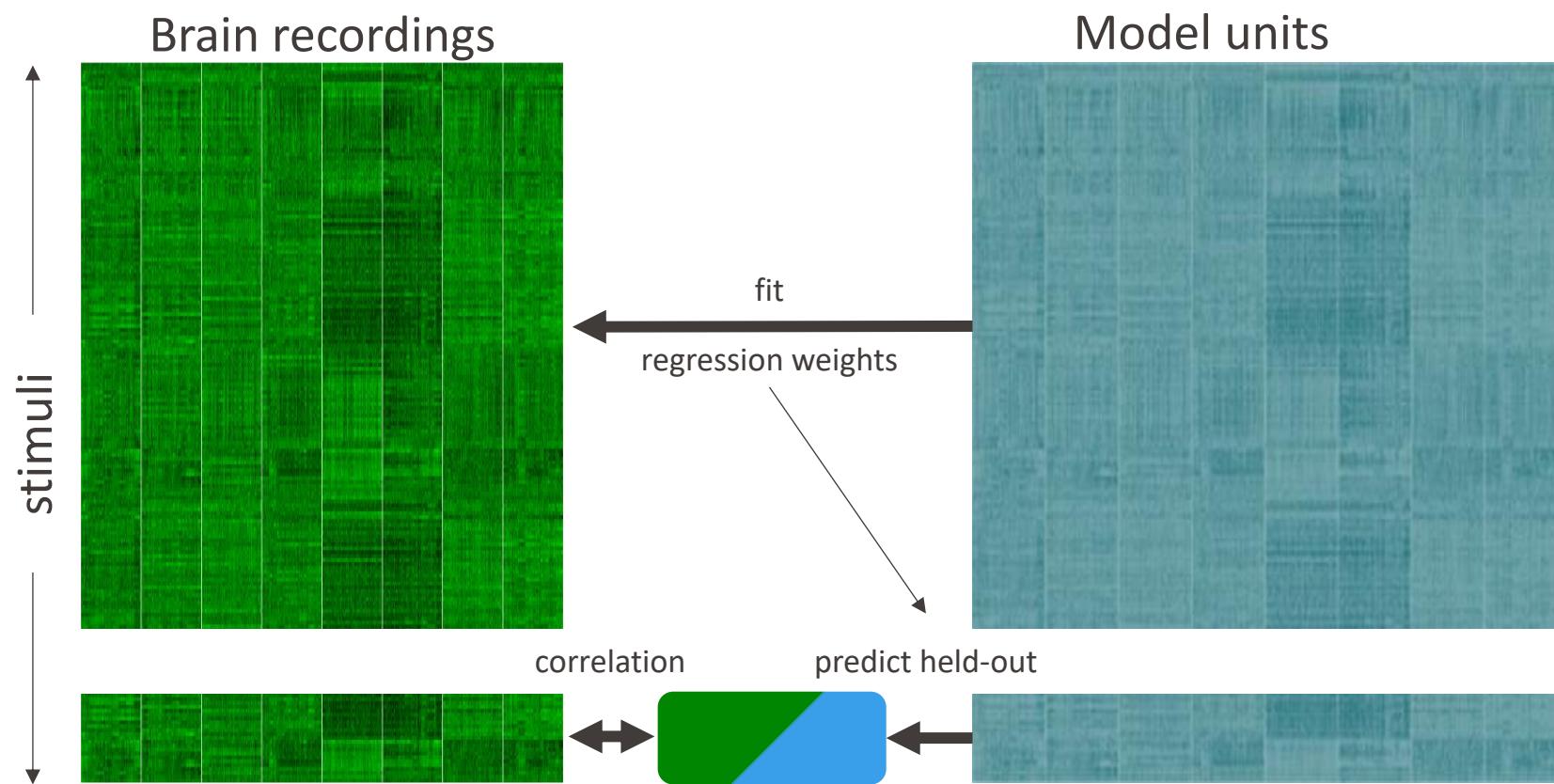
Brain recordings



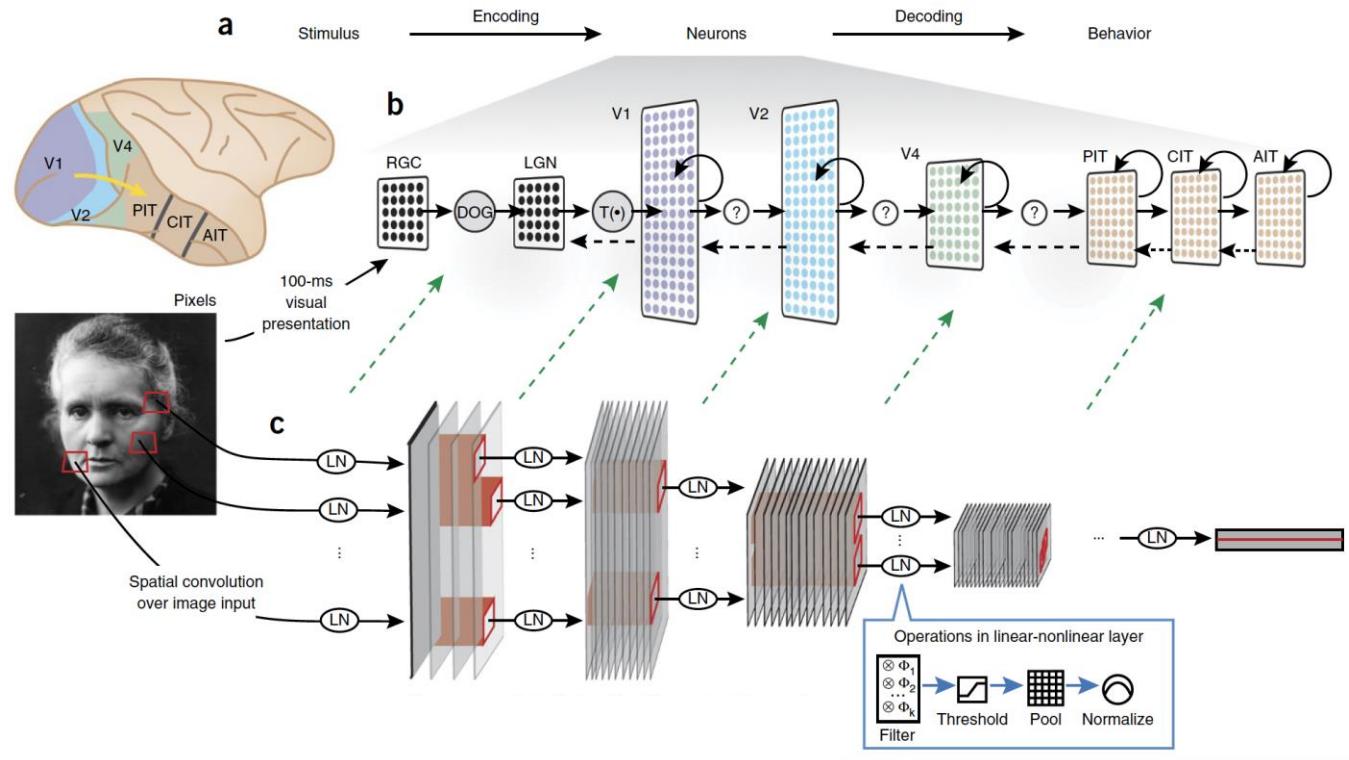
Model units



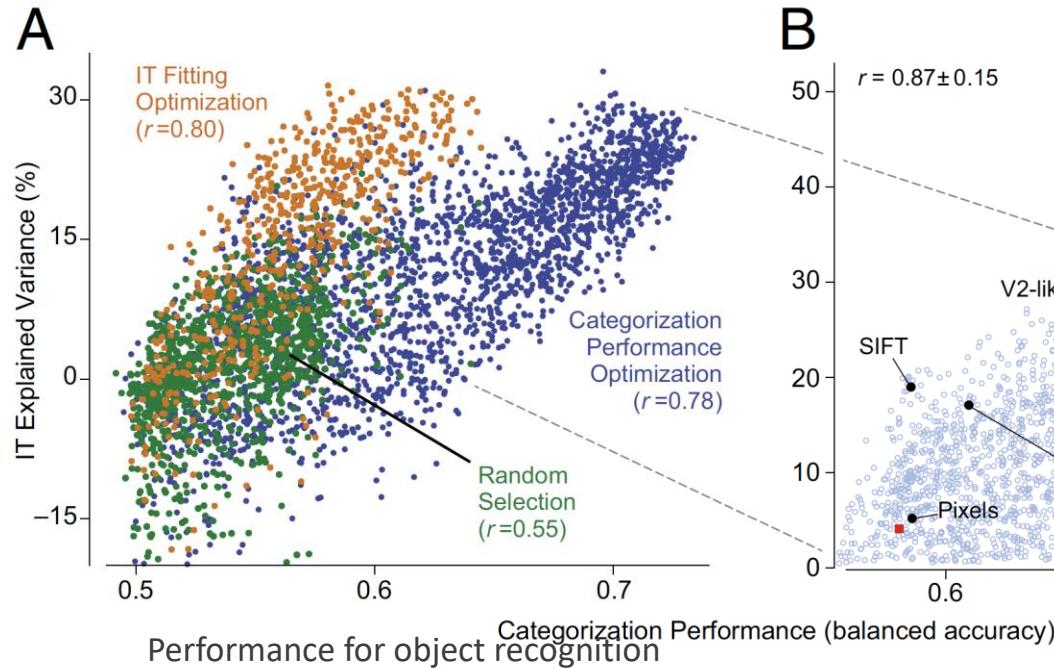
Neural benchmarks

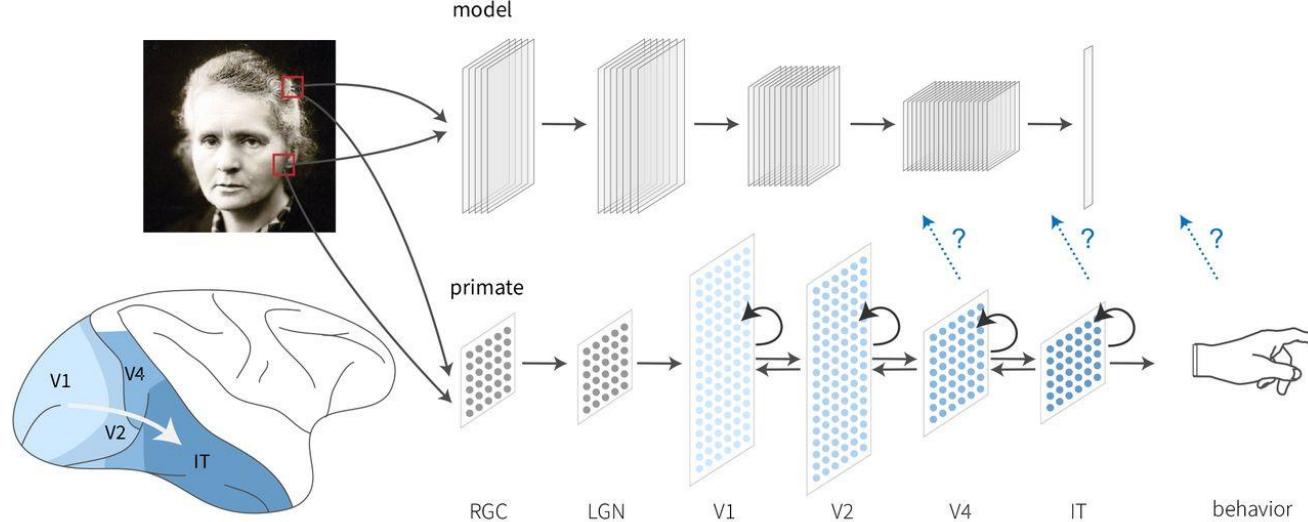
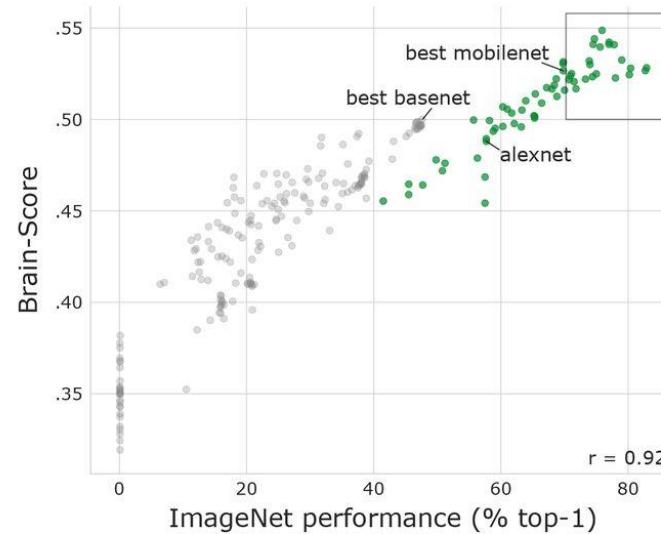
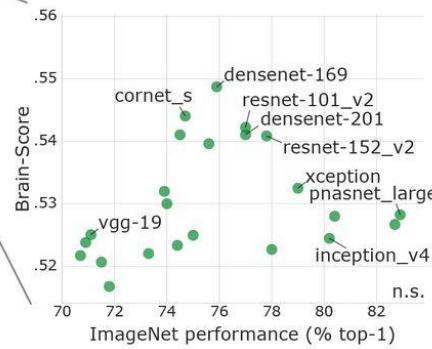


Model building



Large scale architecture search and model comparison



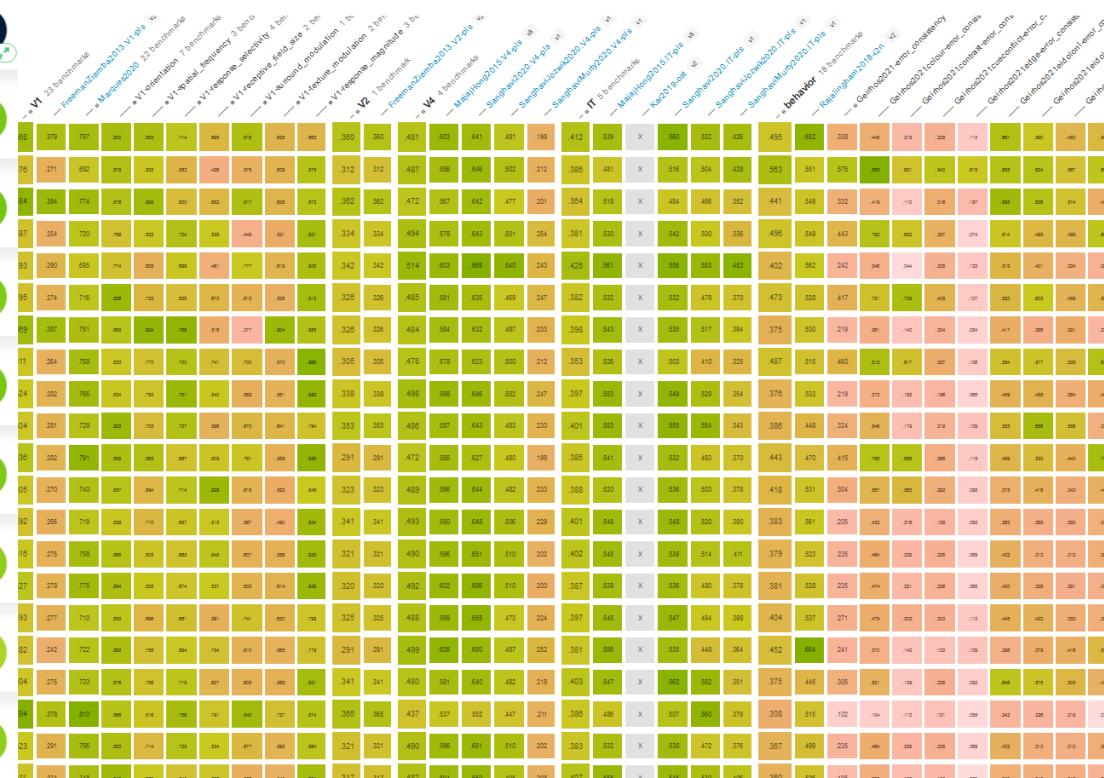


Brain-Score **100+ brain & behavior benchmarks, 300+ models**

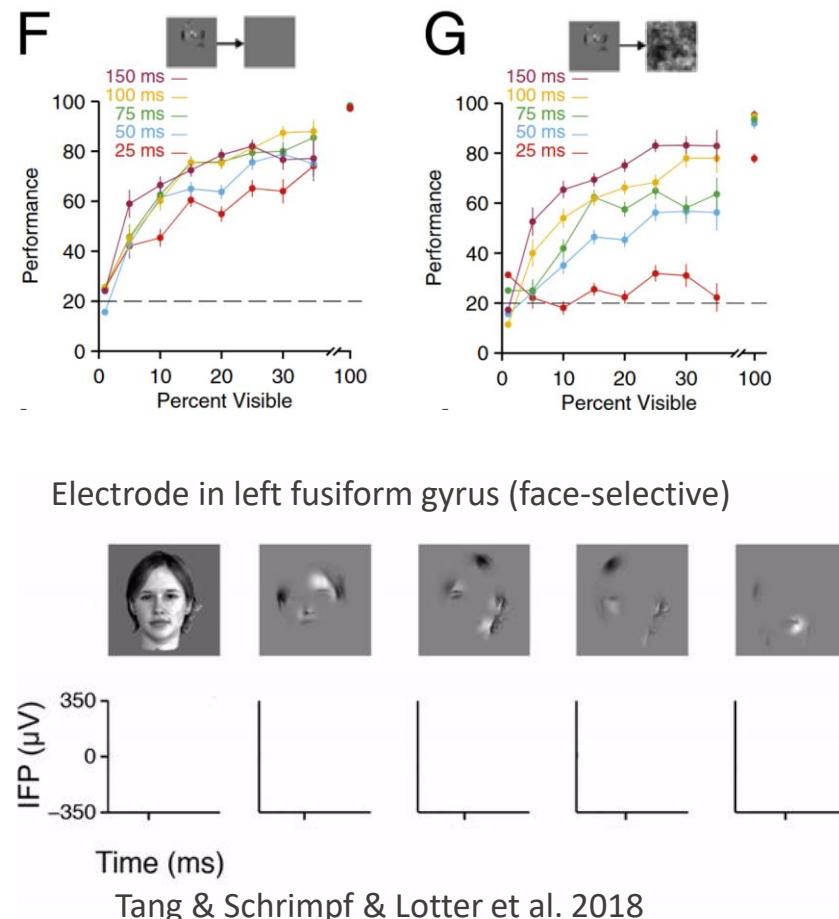
e.g. neural predictions for different image sets, distributional alignments such as spatial frequency, behavioral generalization, ...

www.Brain-Score.org

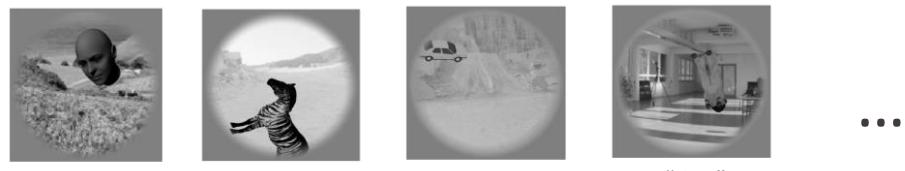
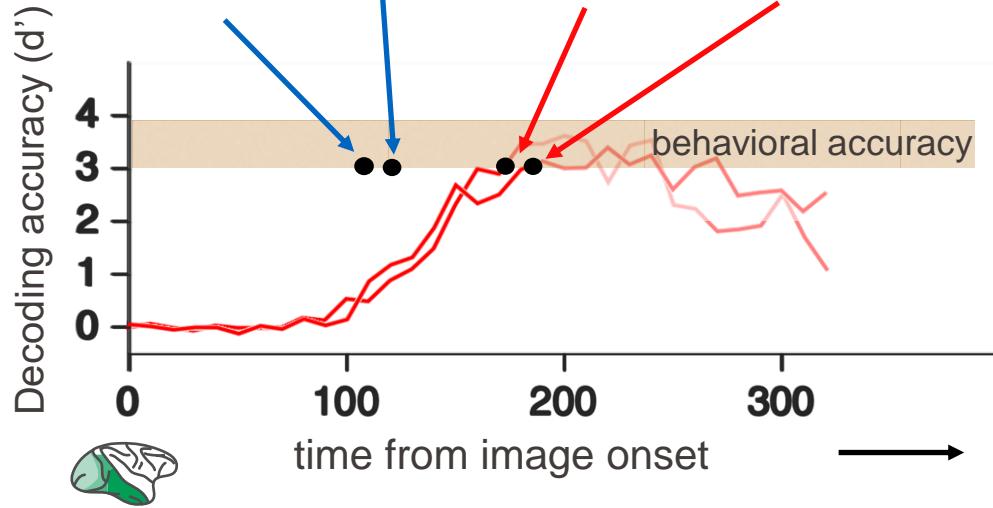
Rank	Model	average	neural	behavior
1	convnext_large_mlp:clip_lao	.467	.378	.555
2	convnext_xlarge:fb_in22k_ft	.449	.338	.560
3	vit_base_patch16_clip_224:o	.445	.343	.548
4	vit_large_patch14_clip_224:la	.445	.332	.559
5	vit_large_patch14_clip_224:o	.443	.341	.545
6	vit_base_patch16_clip_224:o	.442	.352	.532
7	vit_renpos_base_patch16_cls	.437	.381	.494
8	cvt_cvt-w24-384-in22k_finetuned-in1k_4	.430	.327	.533



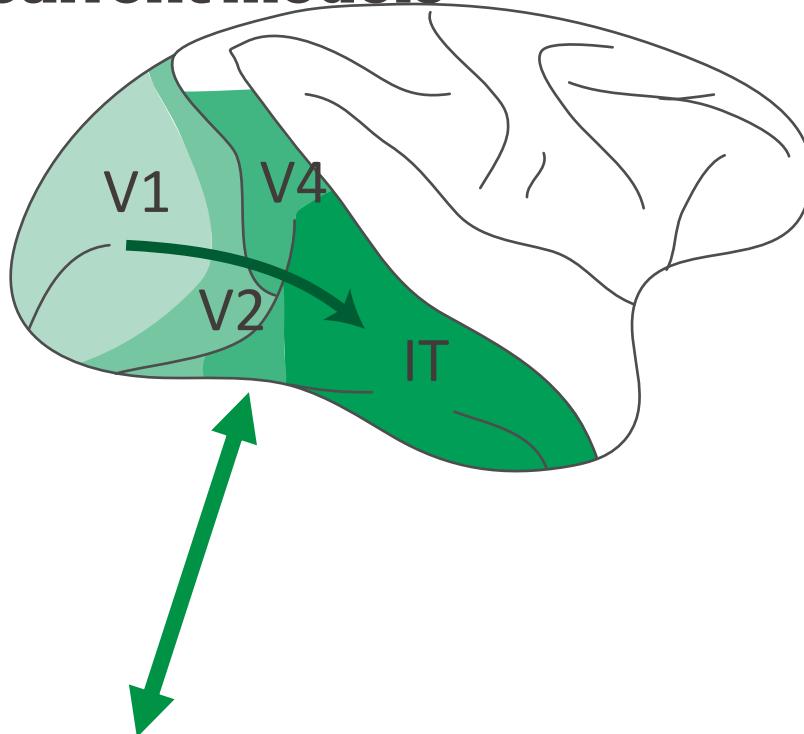
Recurrent processing in the visual system



- **Control images** are solved quickly
- **Challenge images** require more processing

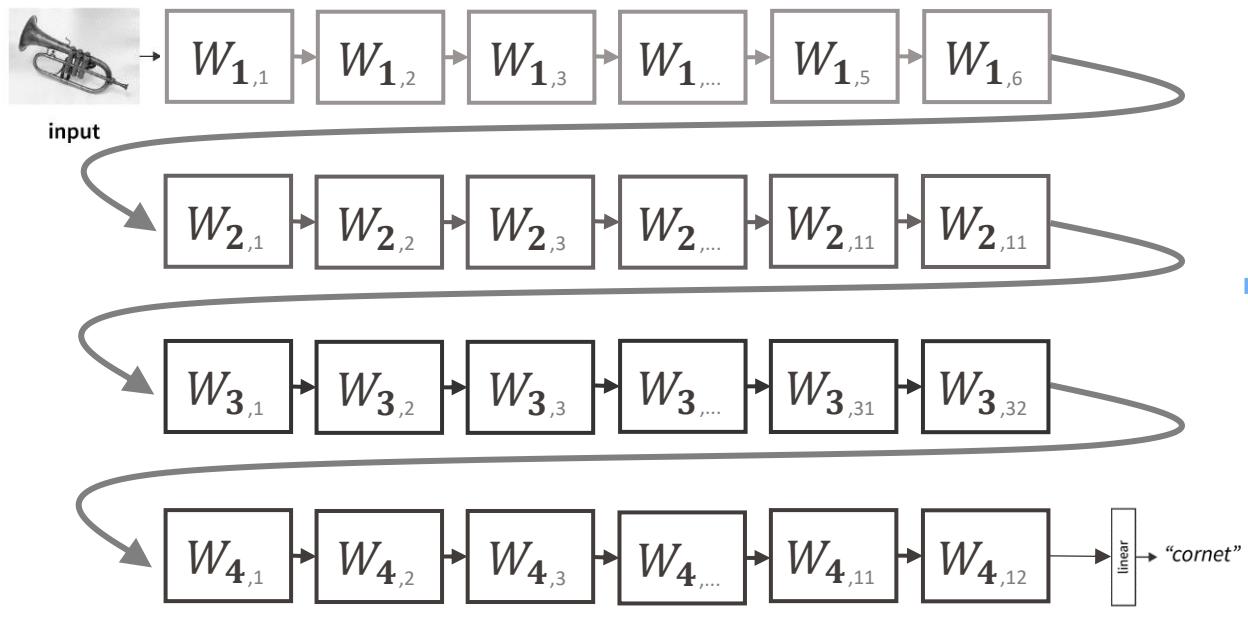
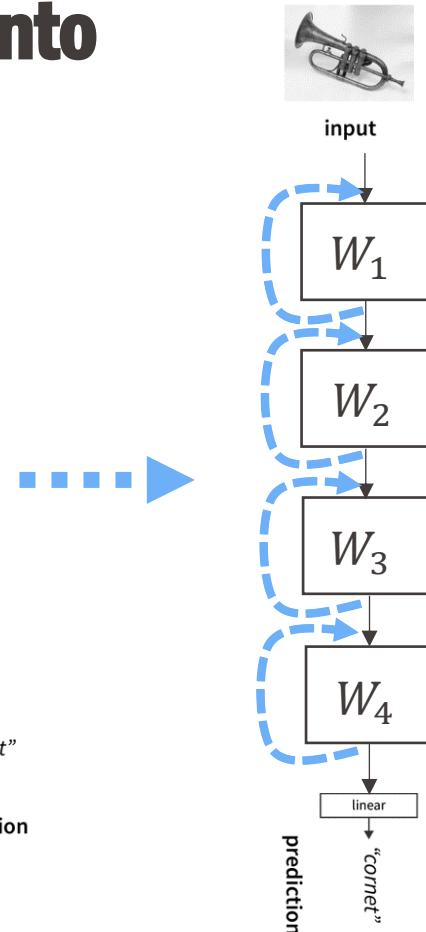


Modeling recurrence: transform feed-forward networks into recurrent models



e.g. ResNet-101

Transform feed-forward networks into recurrent models



e.g. He, Zhang, Ren, Sun (CVPR 2016)

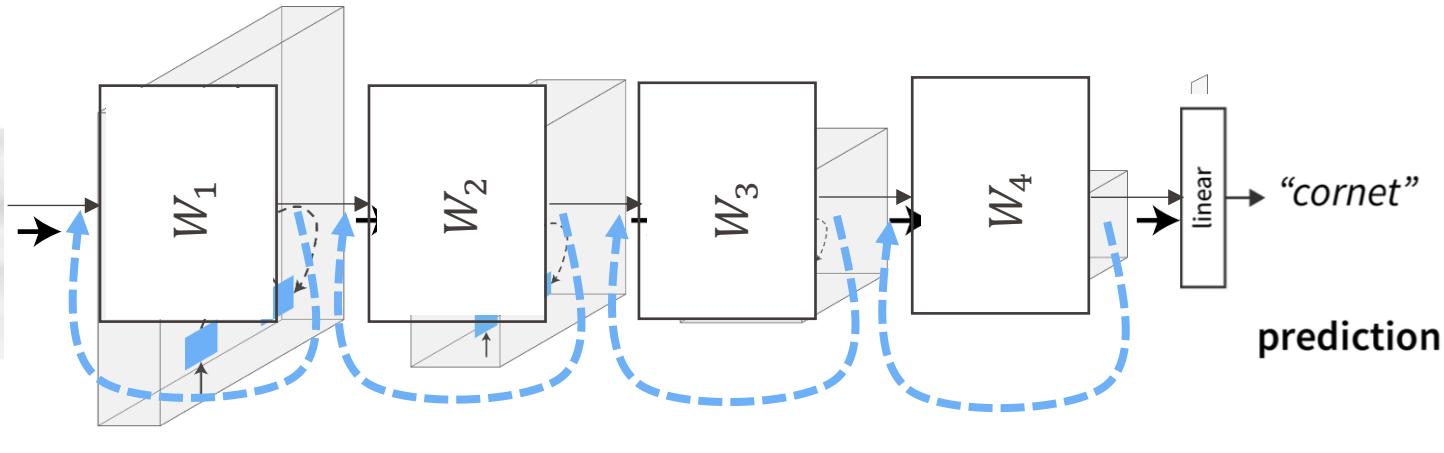
Huang, Liu, van der Maaten, Weinberger (CVPR 2017)

Liang & Hu (CVPR 2015) Liao & Poggio (arXiv 2016) Tang*, Schrimpf*,

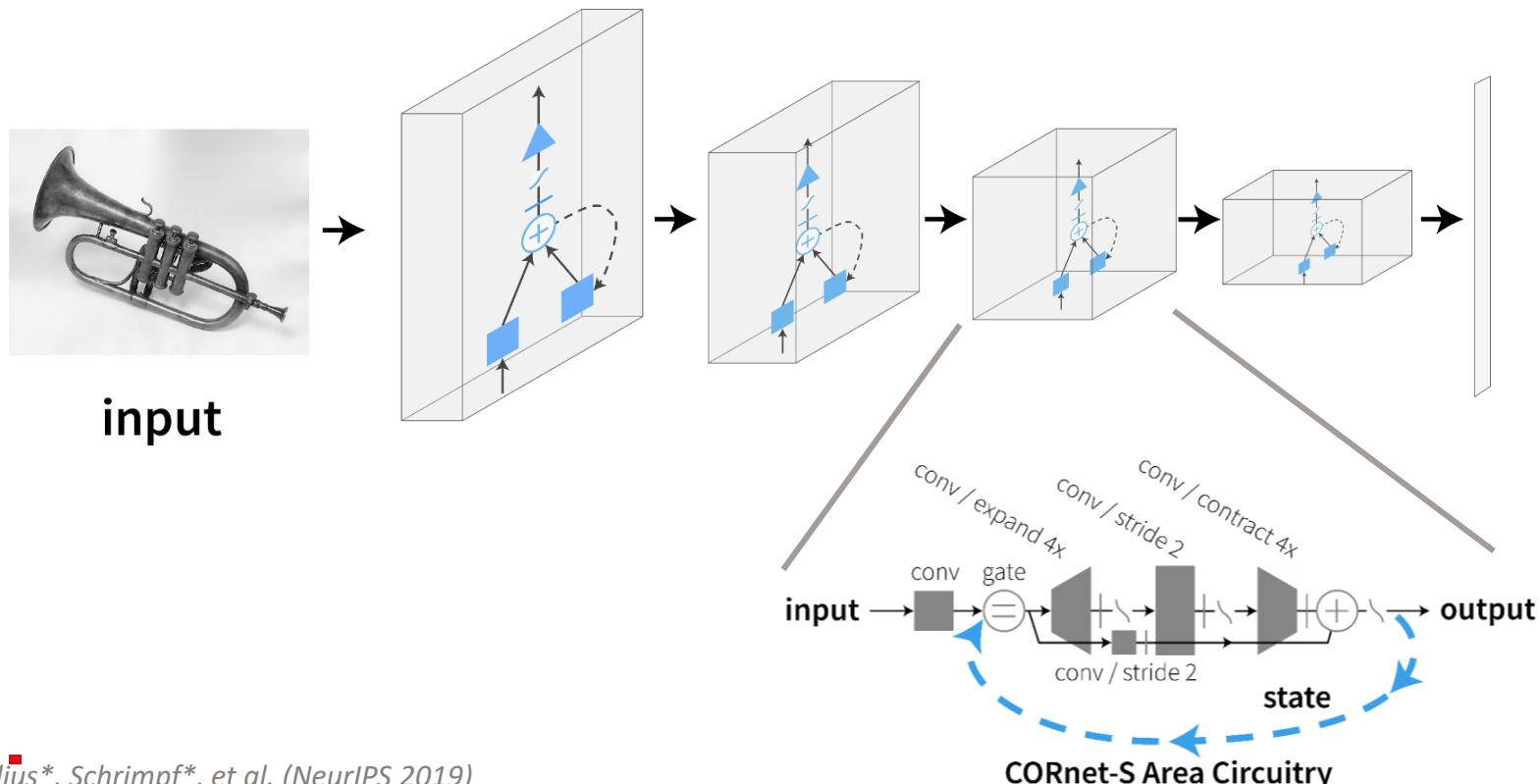
Lotter* et al. (PNAS 2018) Nayebi*, Bear*, Kubilius* et al. (NIPS 2018)

Modeling recurrence: transform feed-forward networks into recurrent models: CORnet

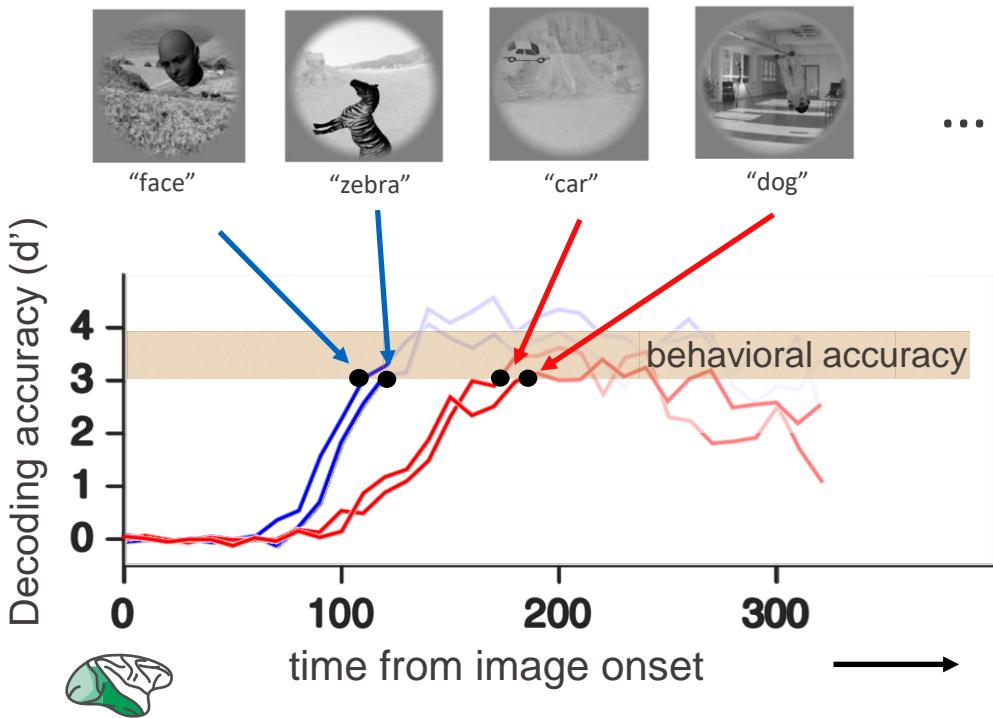
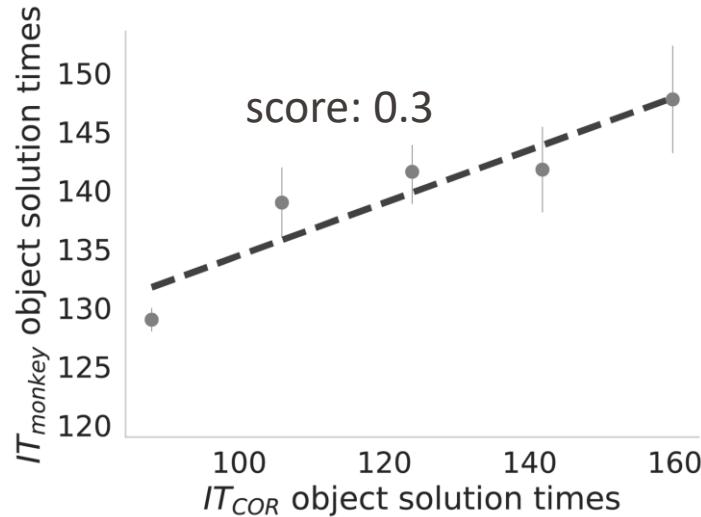
input



Recurrent CORnet model: compact architecture via recurrence

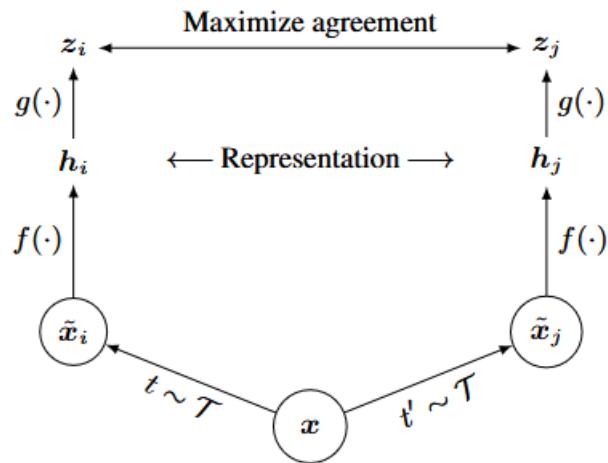
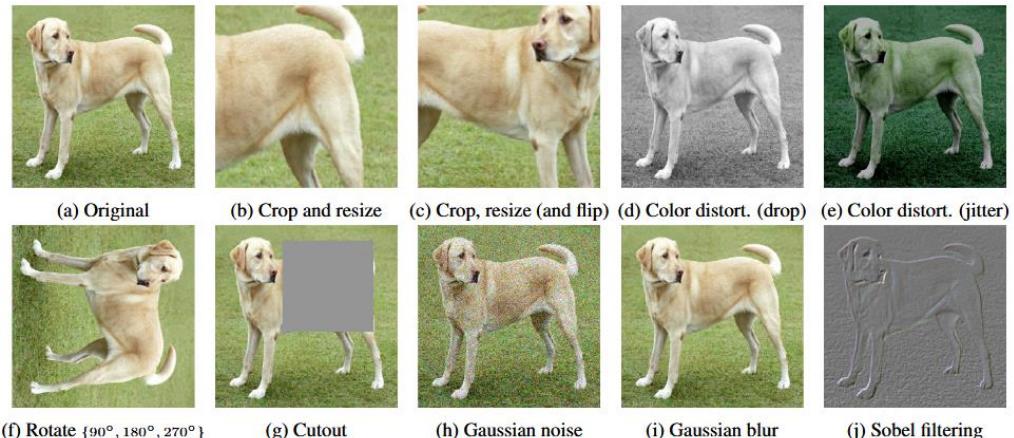
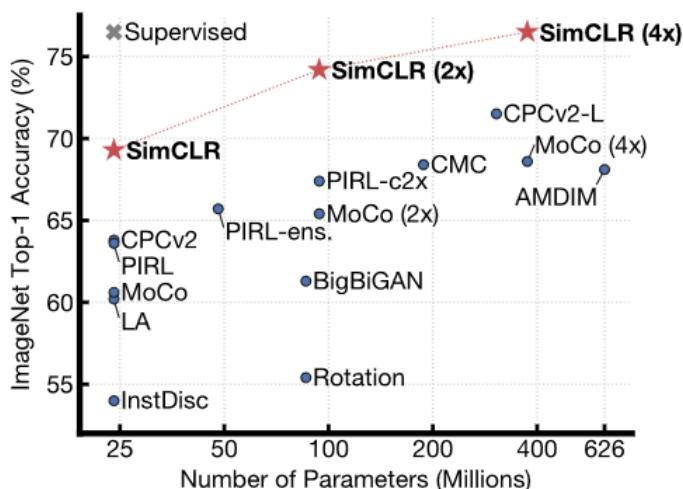


Recurrent model predicts temporal dynamics in IT



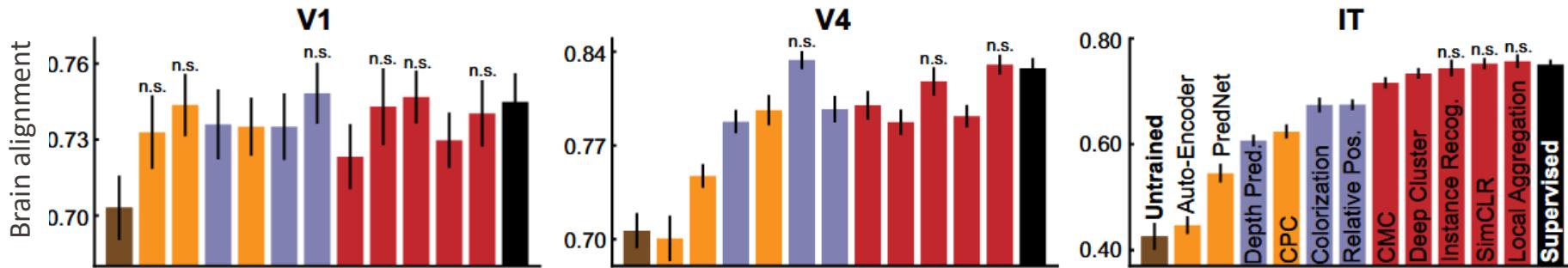
- Unlike feedforward models, CORnet-S can **predict neural responses over time**.
- i.e., when the **brain's IT is fast** to process images, **CORnet's IT-layer is also fast**

Unsupervised learning with a contrastive loss



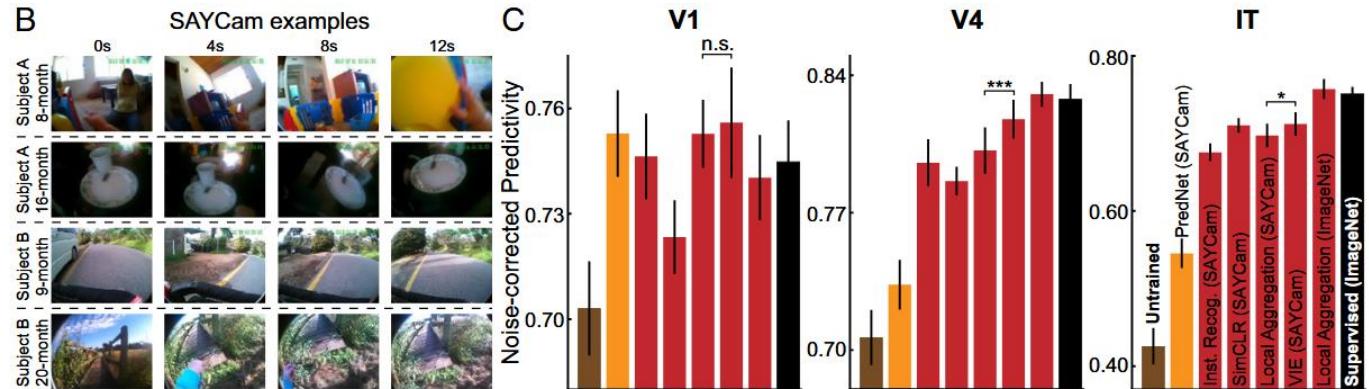
- Unsupervised approaches such as SimCLR encourage similar representations for similar inputs
- Performance rivals supervised learning

Unsupervised models also explain visual brain activity

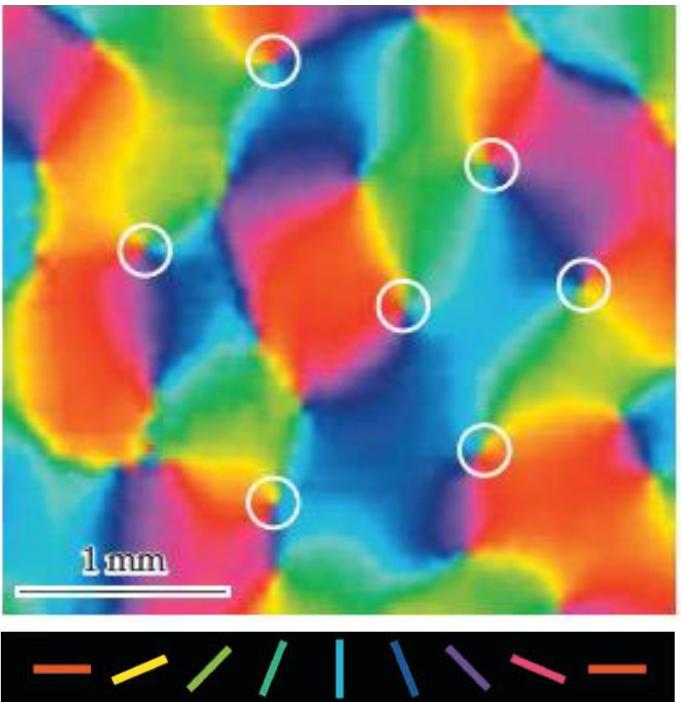


- When trained on regular computer vision datasets (top) or developmental data streams (below, SAYCam), unsupervised models develop brain-like visual representations

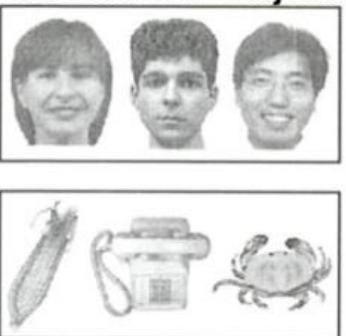
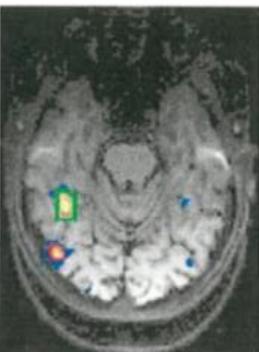
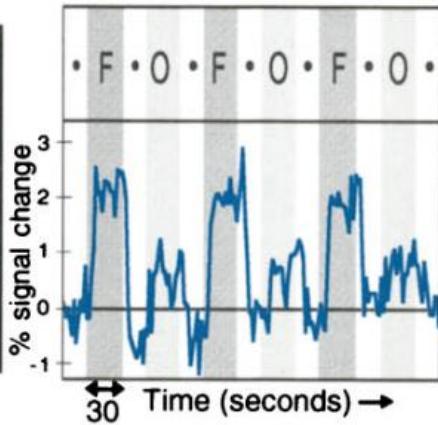
Zhuang et al. 2021



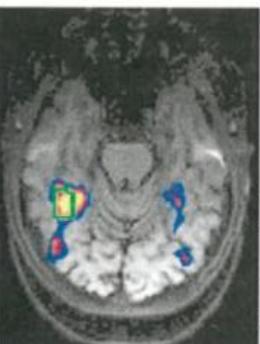
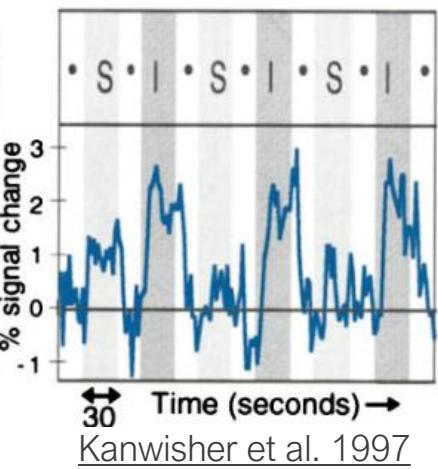
Neurons in cortex are topographically organized



3a. Faces > Objects

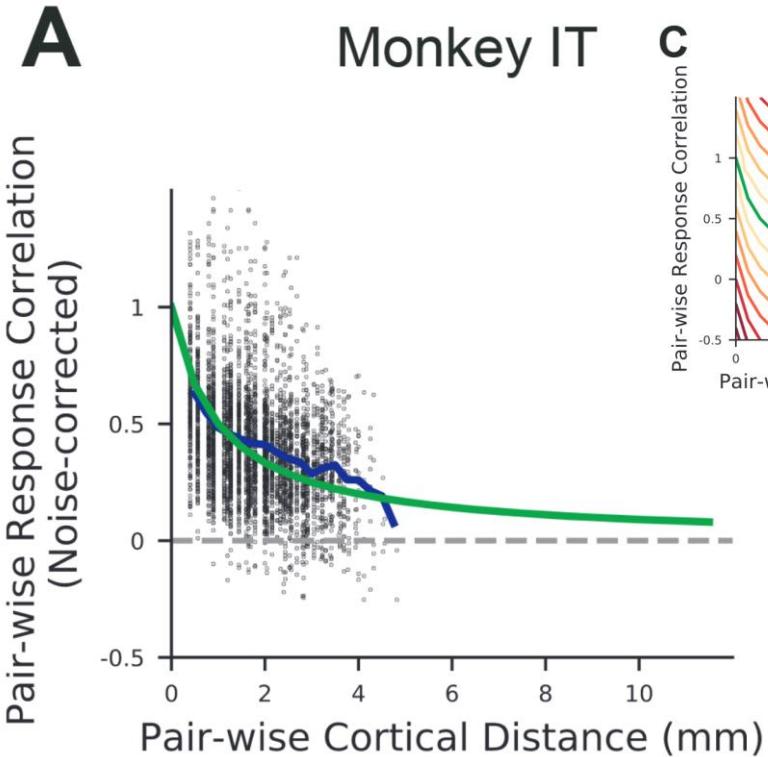
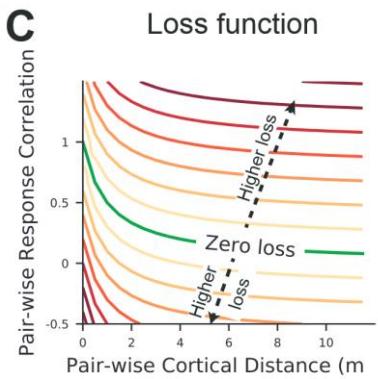


3b. Intact Faces > Scrambled Faces

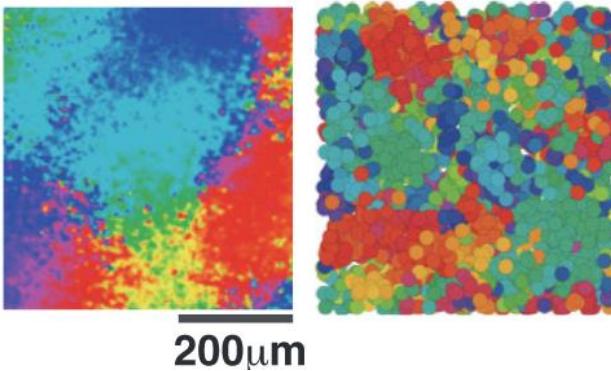


Modeling spatial smoothness with a topographic loss

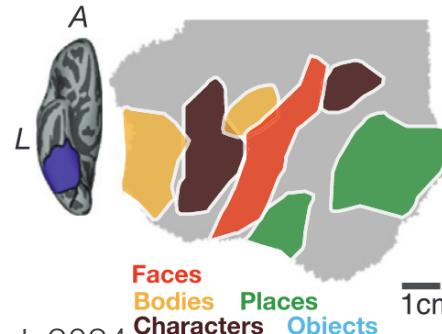
- A spatial loss term leads to brain-like clusters along the visual ventral stream (V1 to IT)



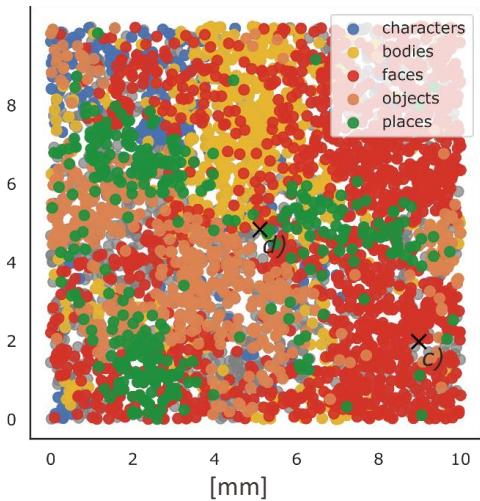
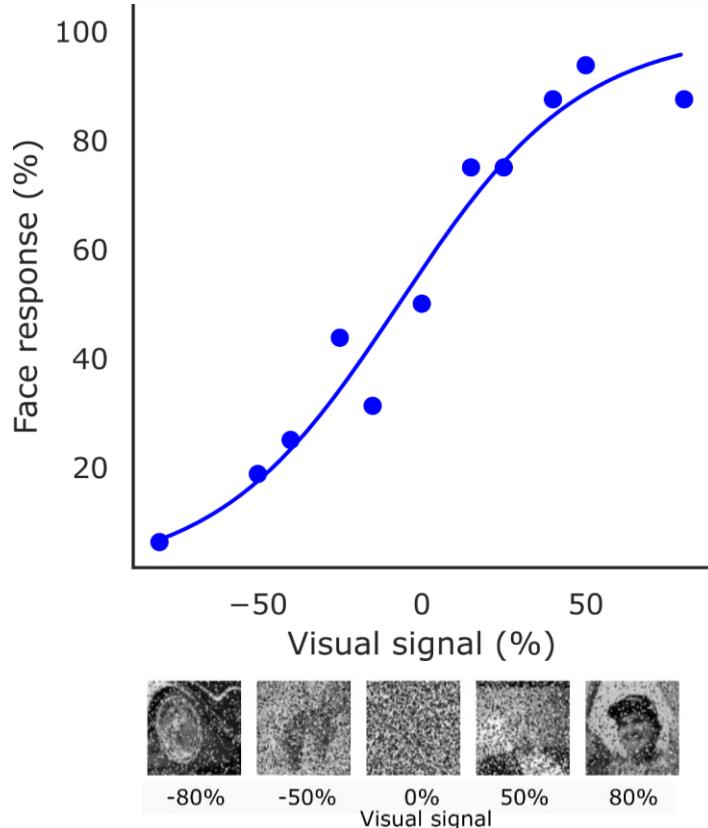
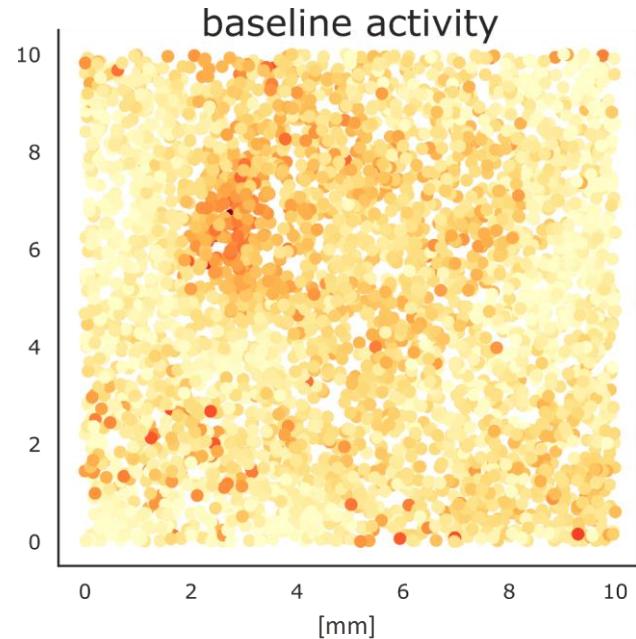
Macaque V1 TDANN



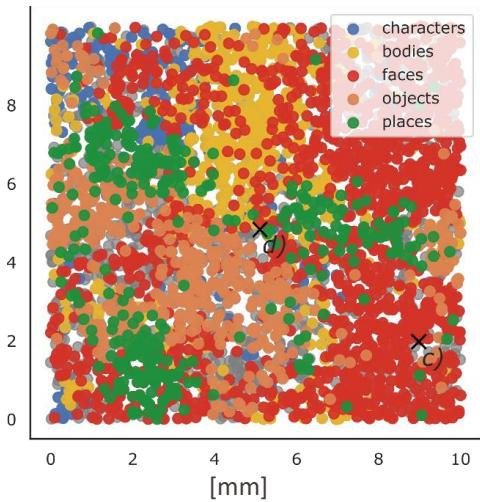
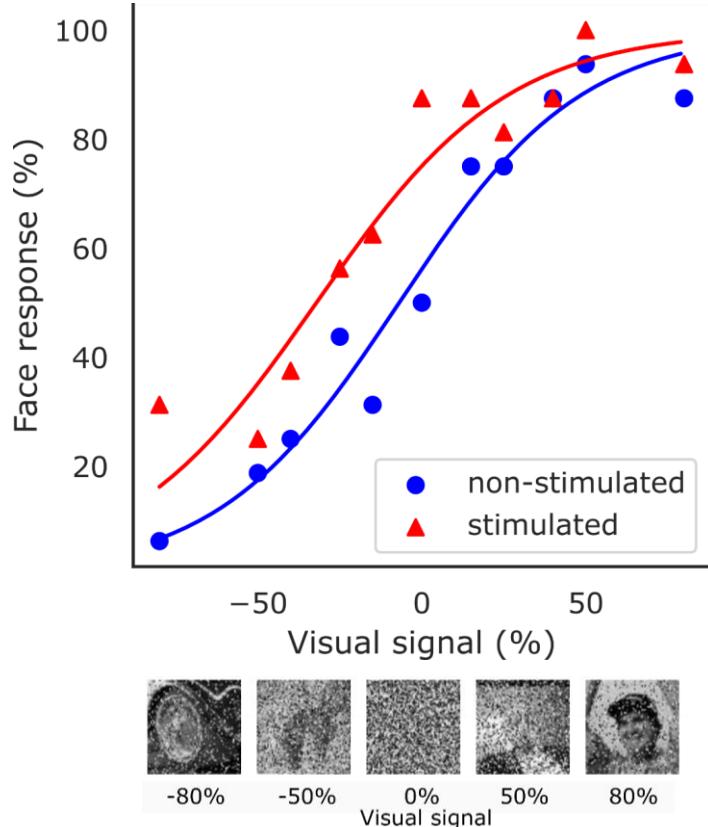
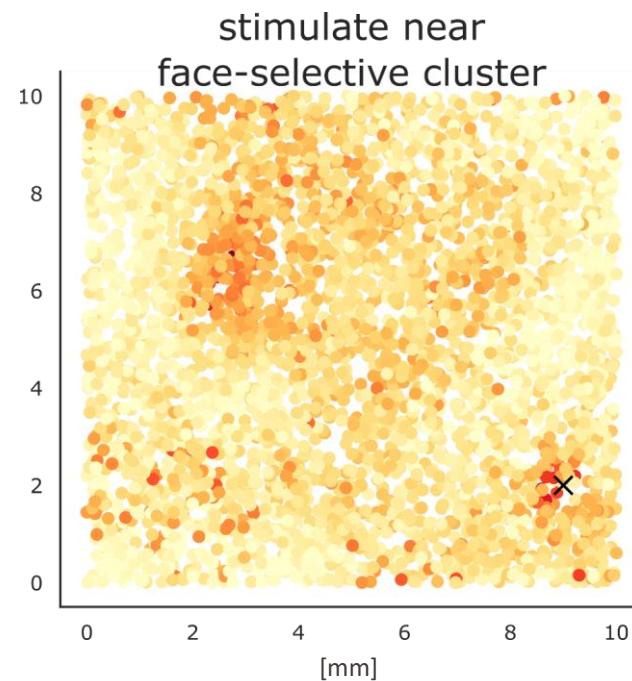
F **Human VTC**



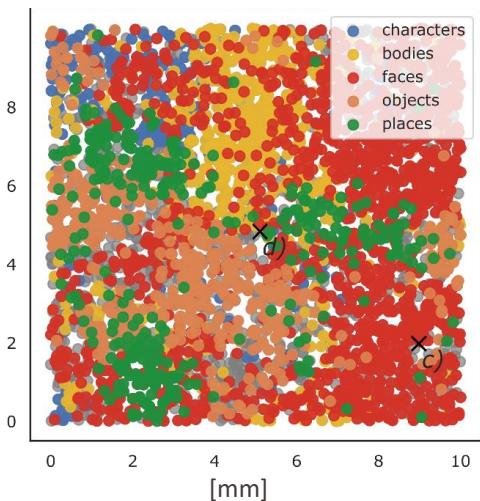
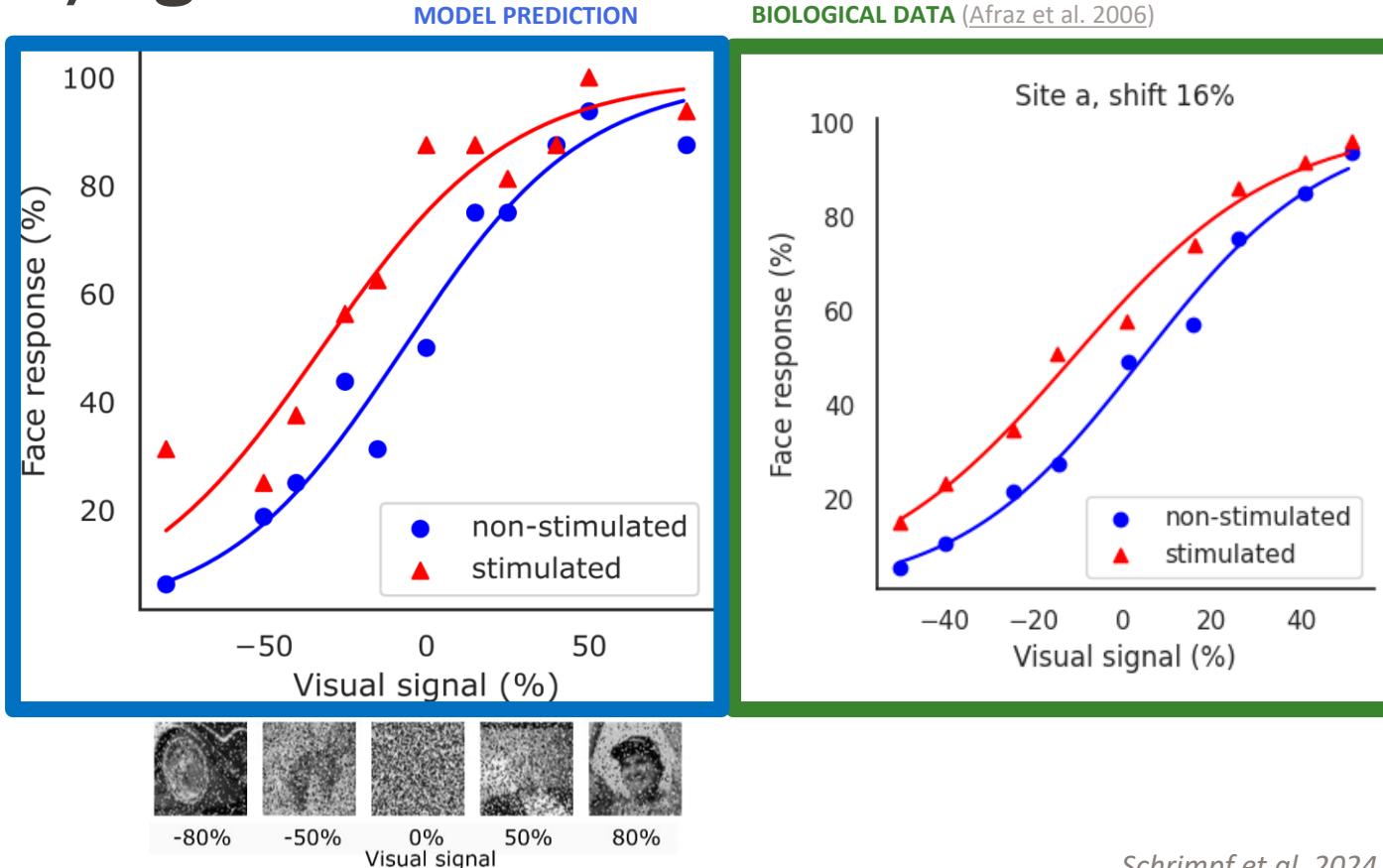
EPFL **Topographic models enable the modeling of causal interventions, e.g. micro-stimulation**



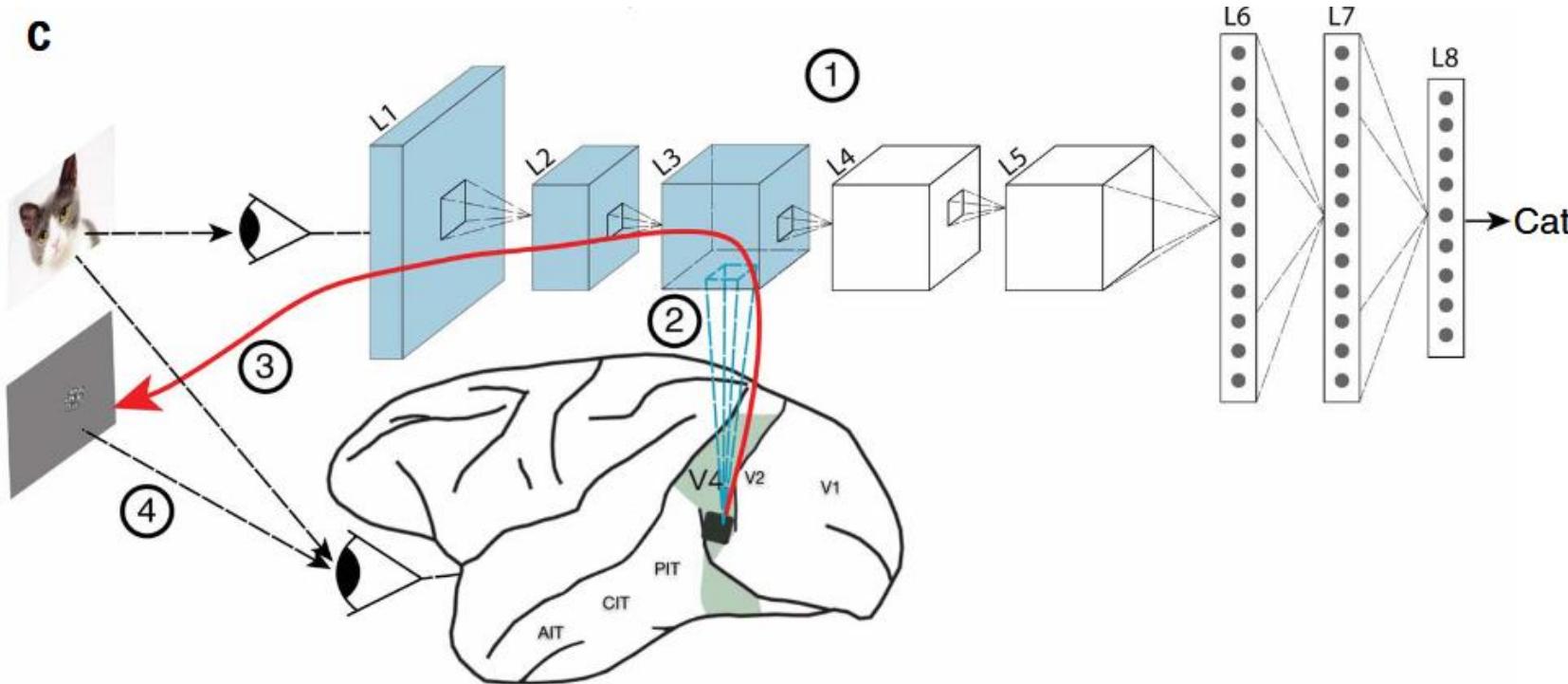
EPFL **Topographic models enable the modeling of causal interventions, e.g. micro-stimulation**



EPFL **Topographic models enable the modeling of causal interventions, e.g. micro-stimulation**

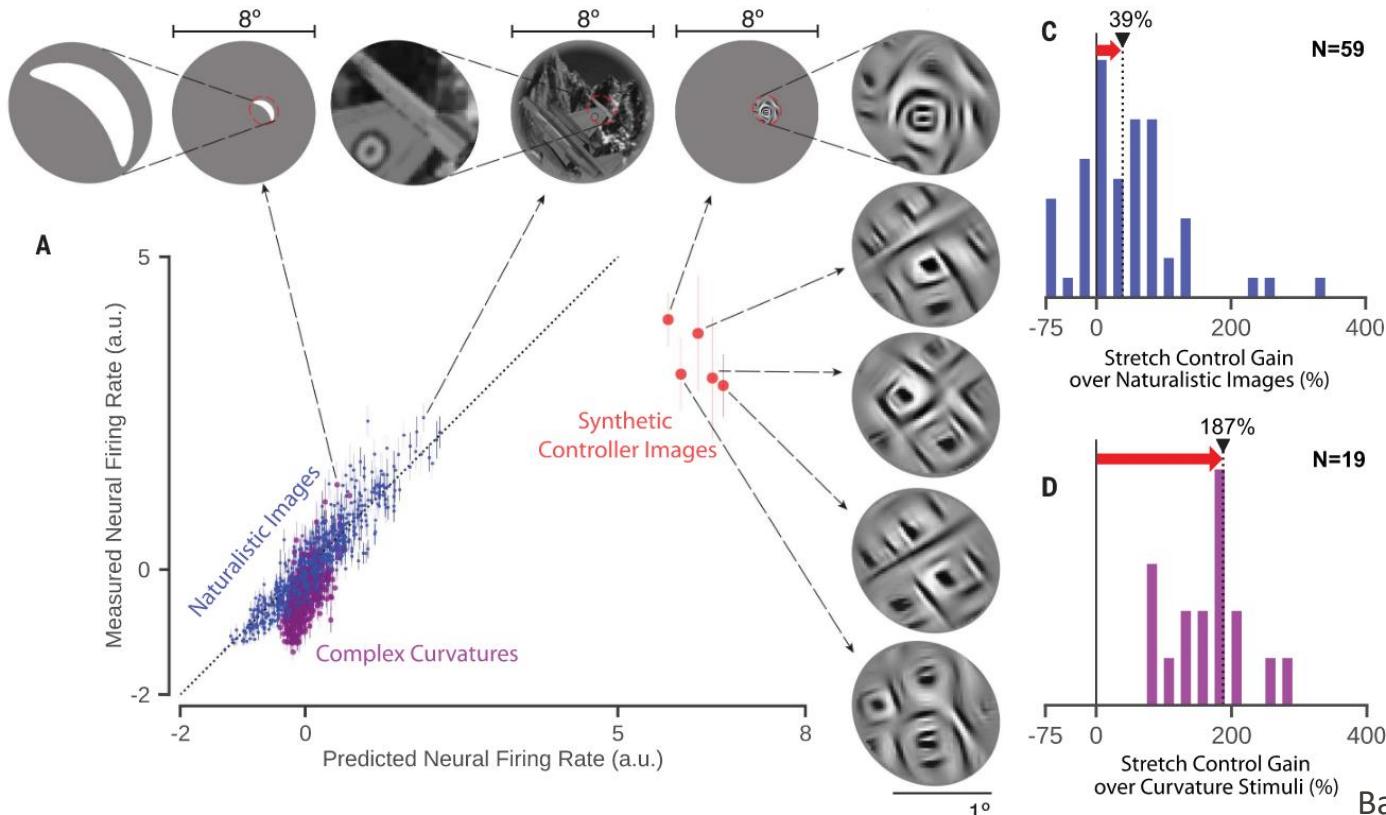


Synthesis of stimuli for neural population control



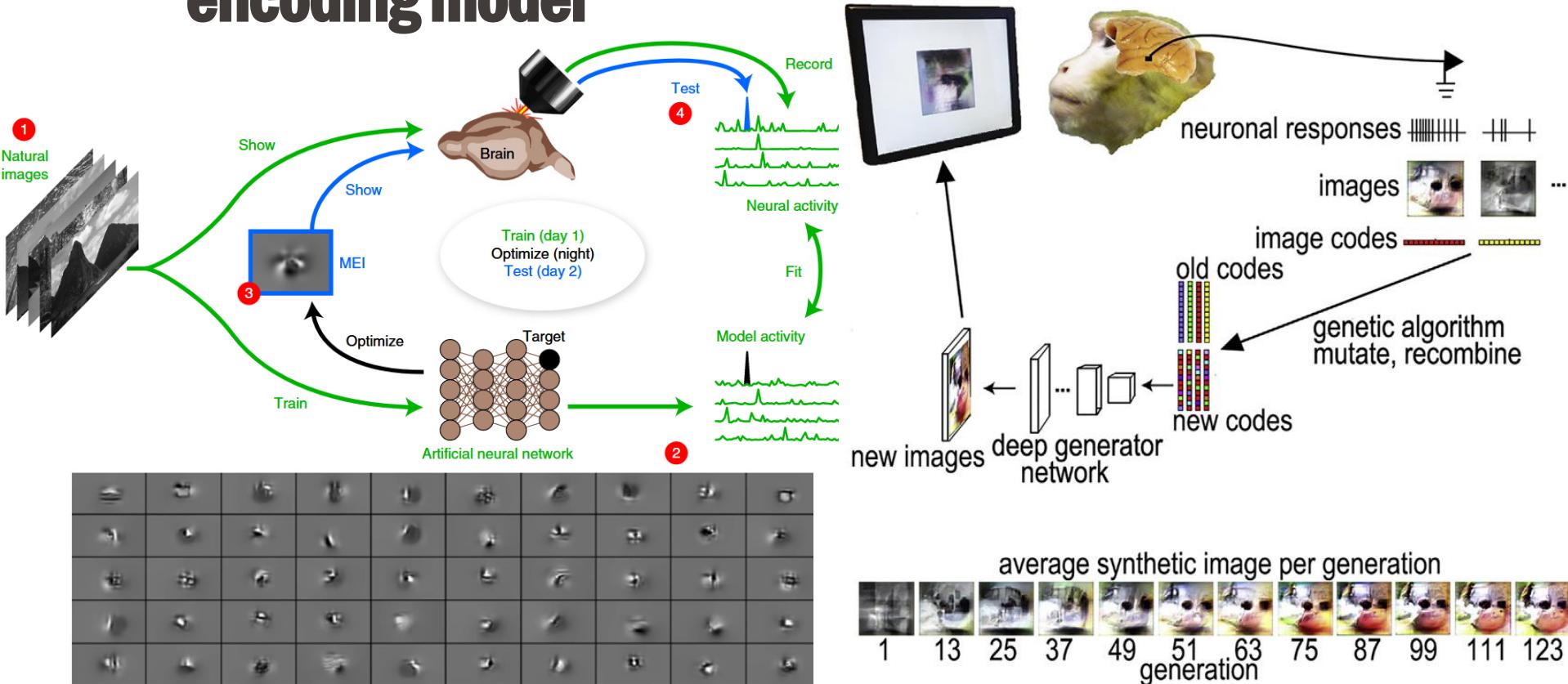
- Idea: model is fully differentiable, so we can set a desired target neural activity and update pixels in a way that they elicit the target state (according to model predictions)

Model-guided synthesis non-invasively controls neural activity



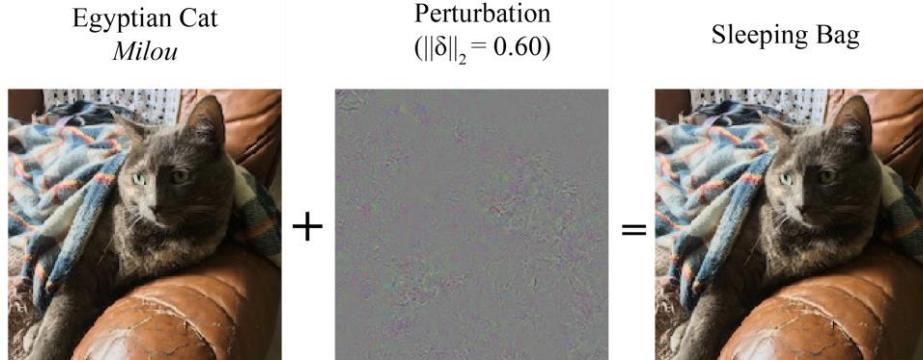
- This procedure works!
- We can generate stimuli that drive neural activity beyond the typical range
- This is a non-invasive control procedure

Generating “exciting” stimuli without a pre-trained encoding model

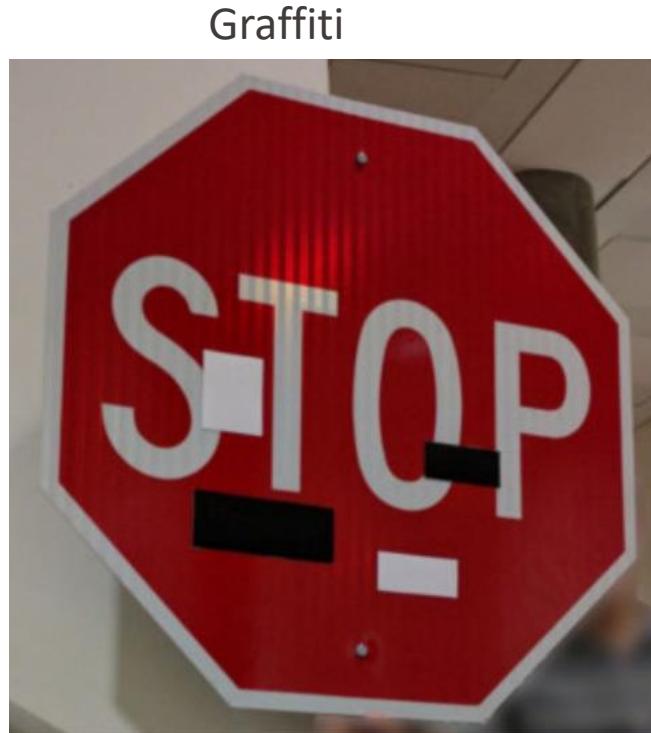


Adversarial attacks in computer vision

- Models are fooled by small, imperceptible perturbations (white box adversarial attacks)
- Protection technique: train on adversarial images “adversarial training” (very costly)



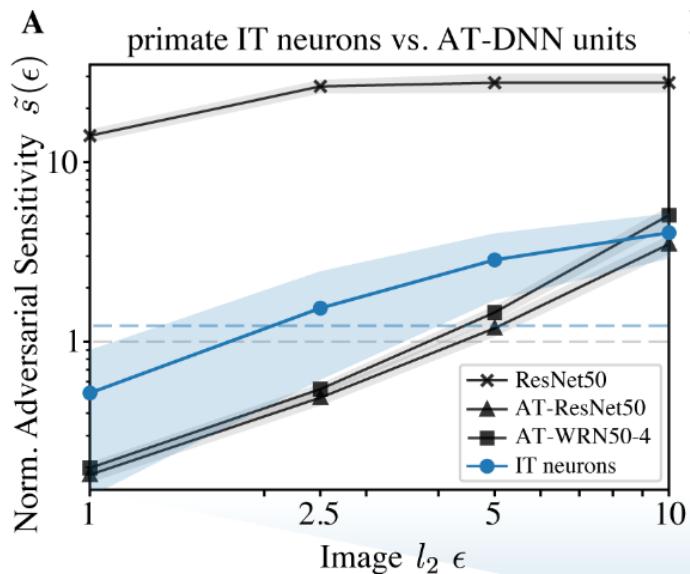
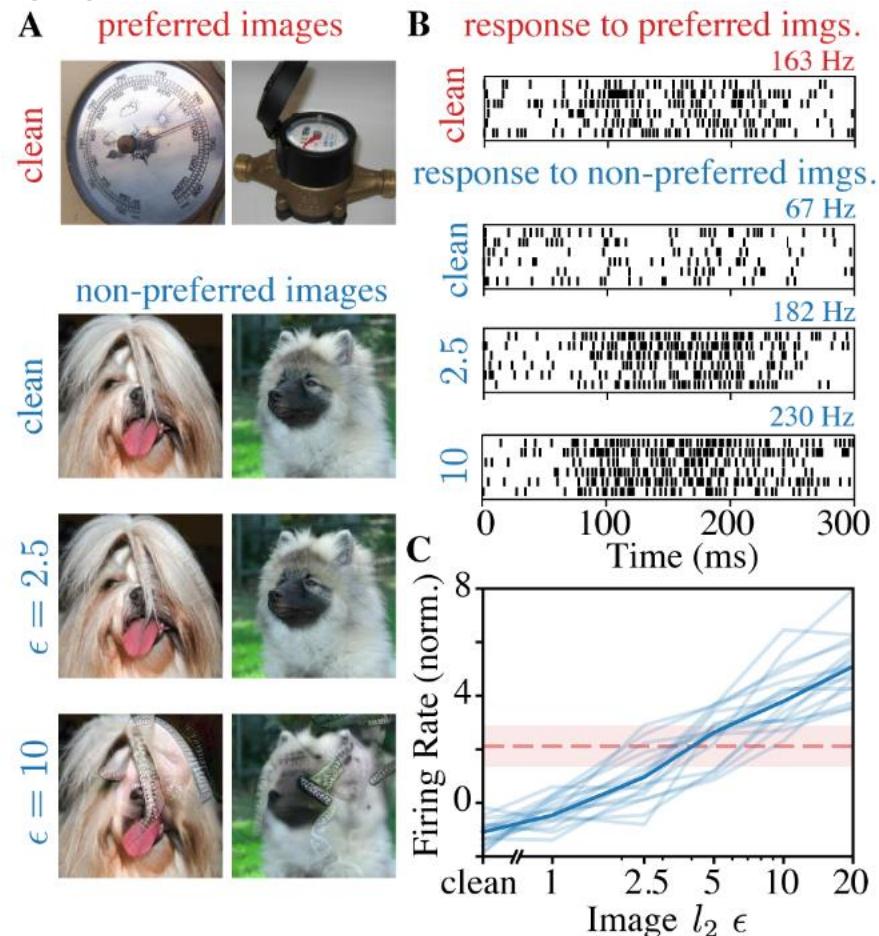
▪ Image from [Dapello*, Marques*, et al. \(NeurIPS 2021\)](#)



Szegedy et al. (ICLR 2014)
Eykholt, Evtimov*, et al. (CVPR 2018)*

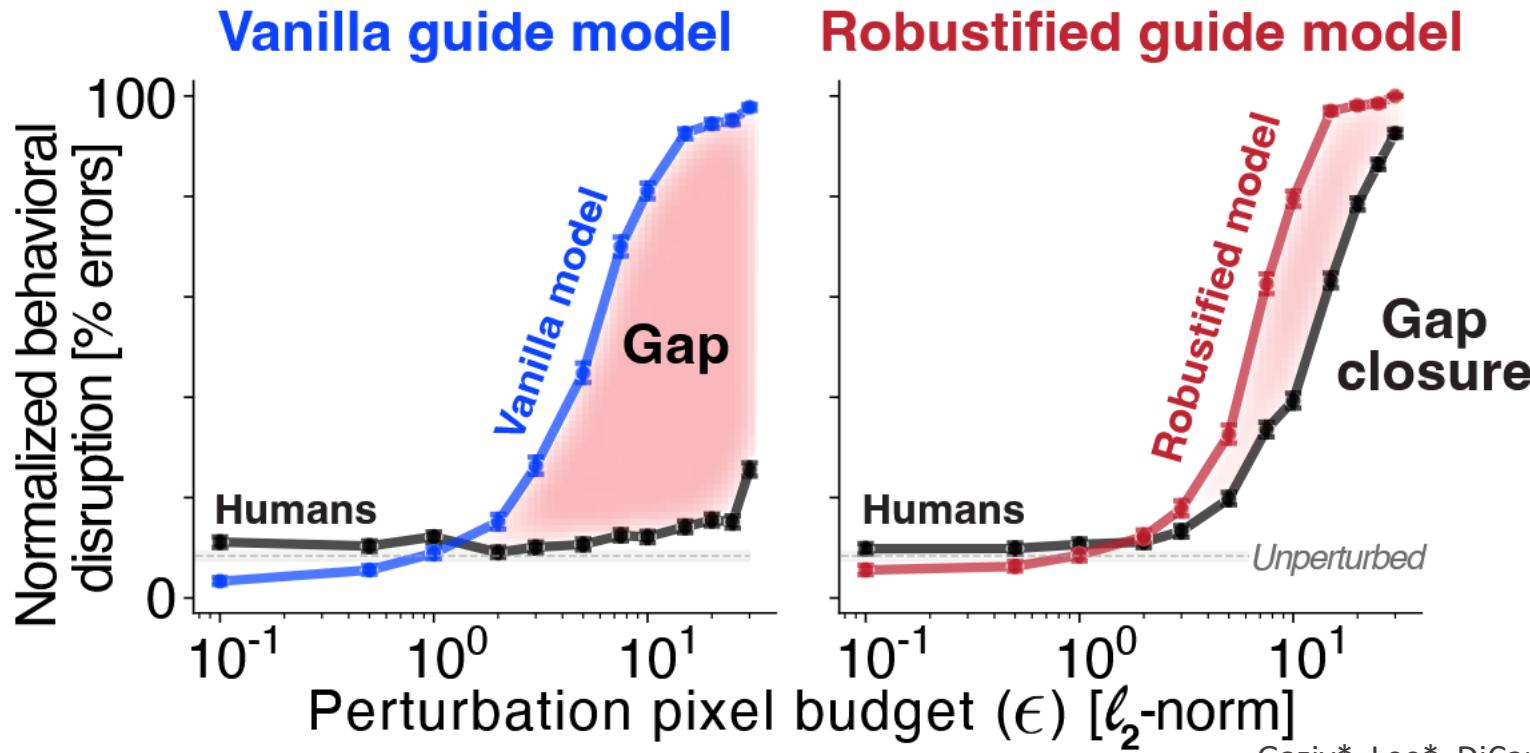
Adversarial attacks on the brain

- Prevalent view: only computational models are susceptible to adversarial attacks
- But: can synthesize images that also fool IT neurons



Adversarial attacks on behavior

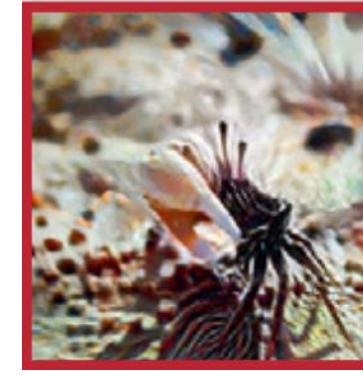
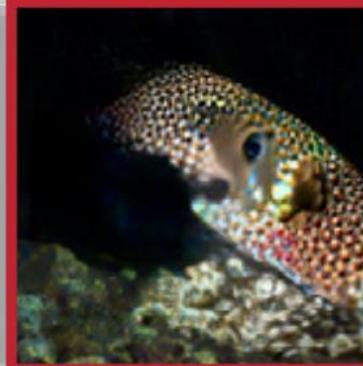
- Using a robustified model (trained with adversarial attacks), can change images in a way that change the decision of humans



Adversarial attacks on behavior

start
images

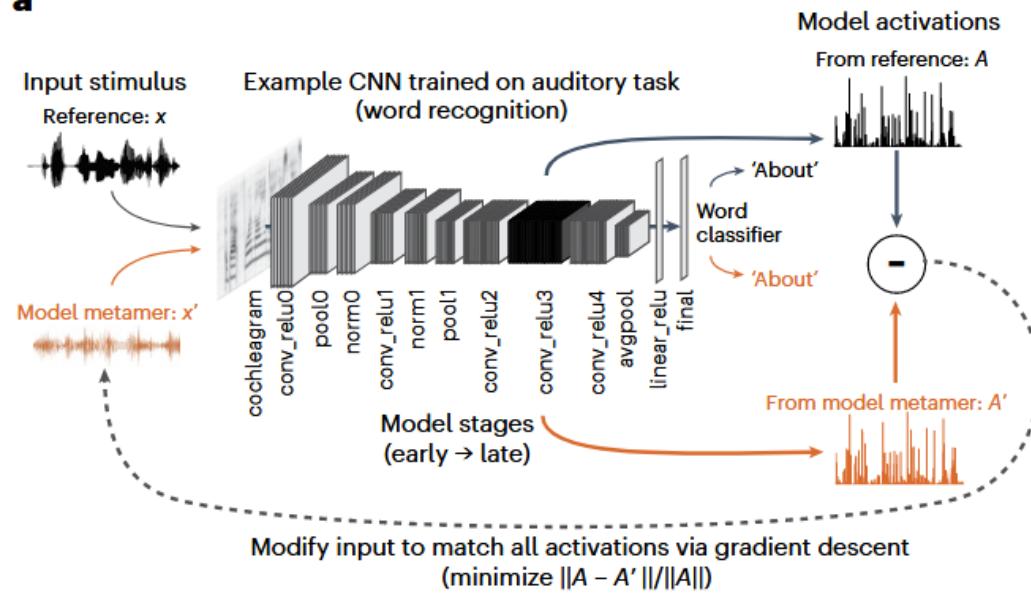
Example target categories
'insect' 'primate' 'fish'



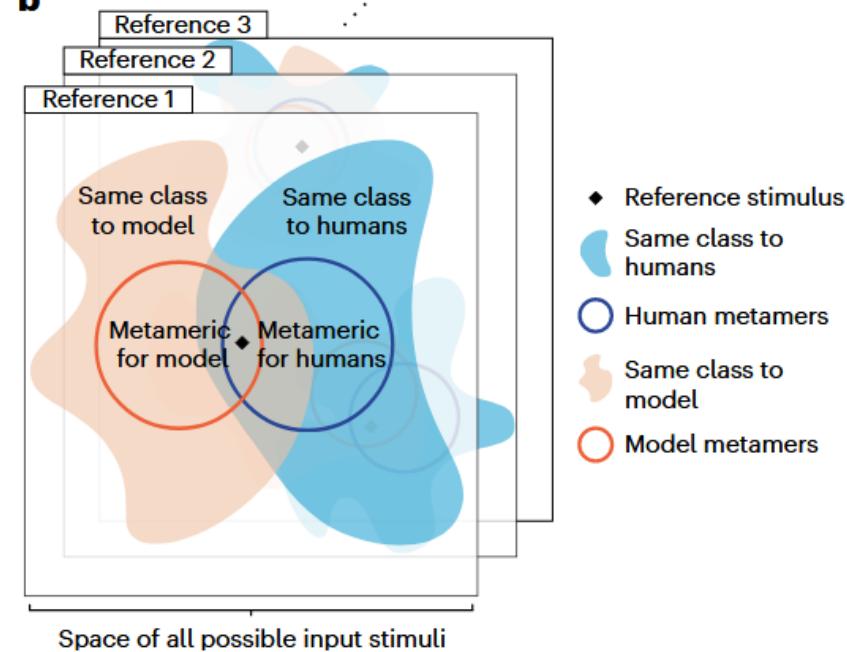
Metamers

- Model metamers: “stimuli whose activations within a model stage are matched to those of a natural stimulus”

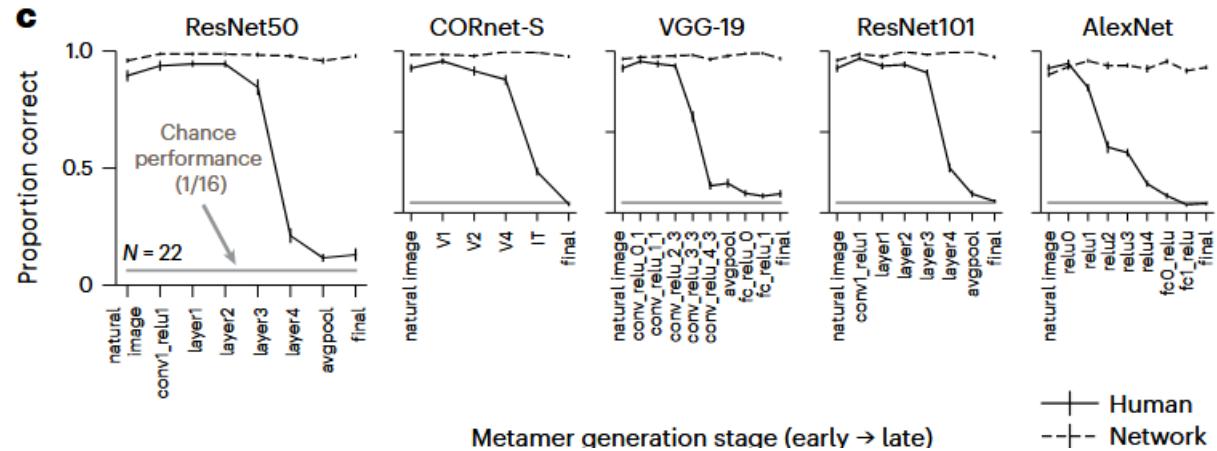
a



b

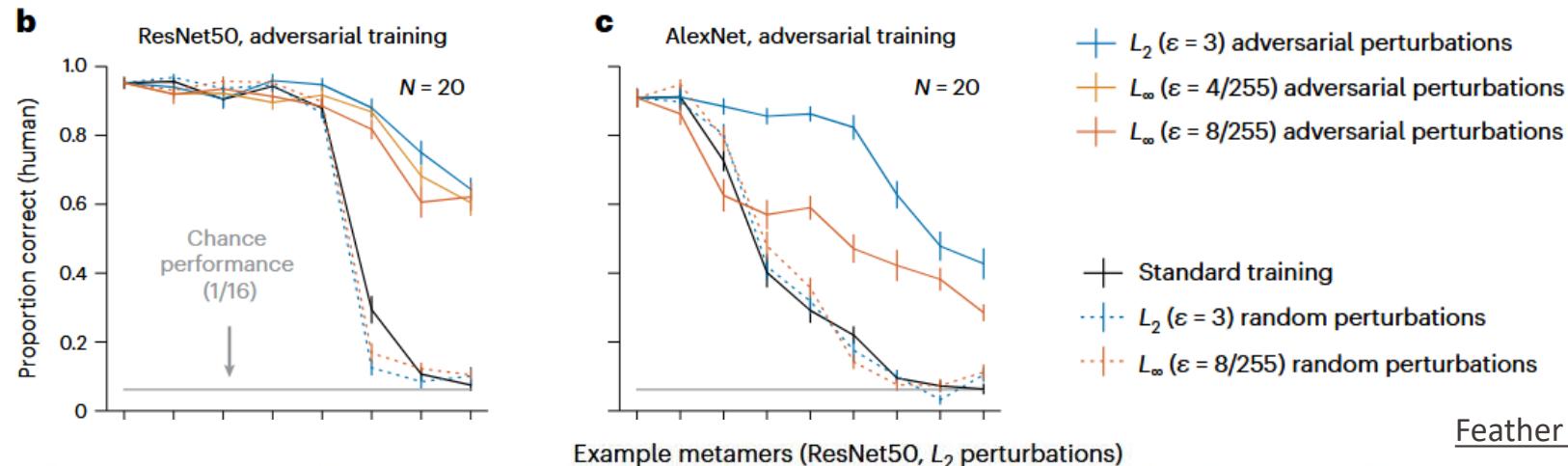


Metamers of standard models are not recognizable by humans



Example metamers (visual networks)

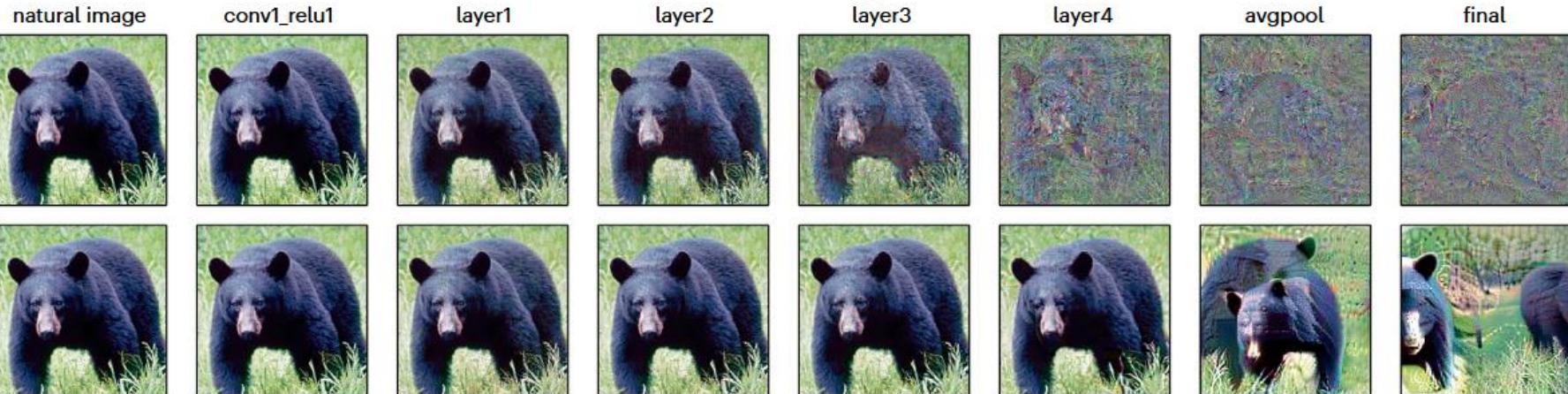
EPFL Adversarial training makes metamers human-recognizable



Feather et al. 2023

d

Example metamers (ResNet50, L_2 perturbations)



Models of auditory processing

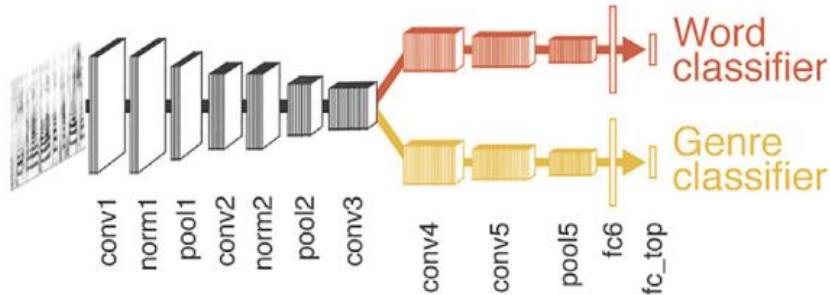
A Word recognition task

Excerpted speech + Background noise

587-way AFC:
Which word (at 1 sec.)?

2 sec.

E Best-performing deep neural network



- Jointly optimize CNN for word + genre recognition tasks

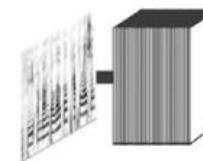
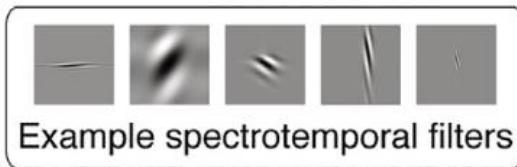
Musical genre task

Excerpted music + Background noise

41-way AFC:
Which genre?

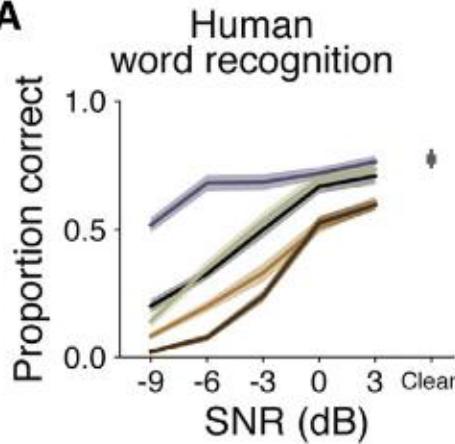
2 sec.

F Baseline model: Spectrotemporal filter bank

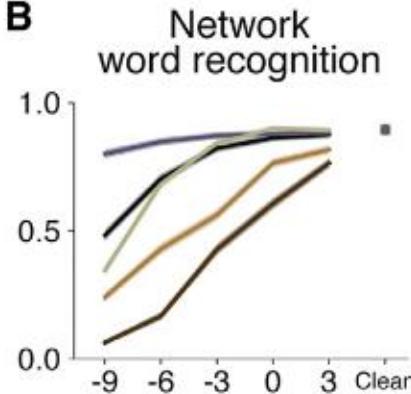


Task-optimized model exhibits human-like behavior

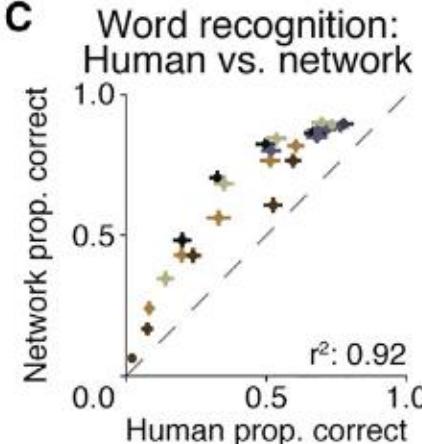
A



B

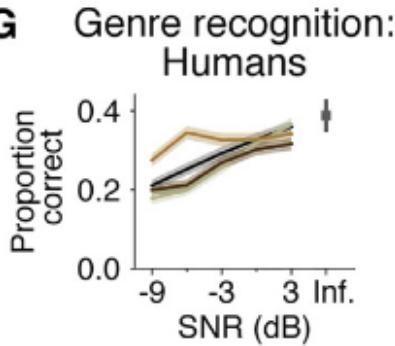
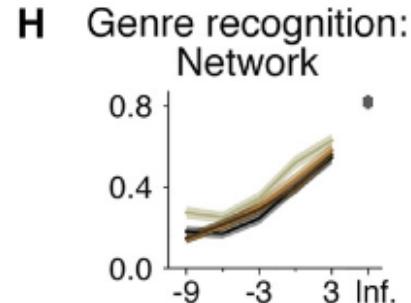


C

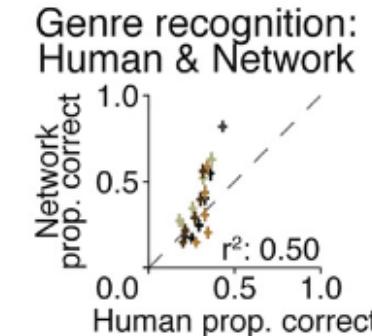


- Model closely predicts human performance patterns, especially for word recognition tasks

G



I



- Less behaviorally-aligned for genre recognition

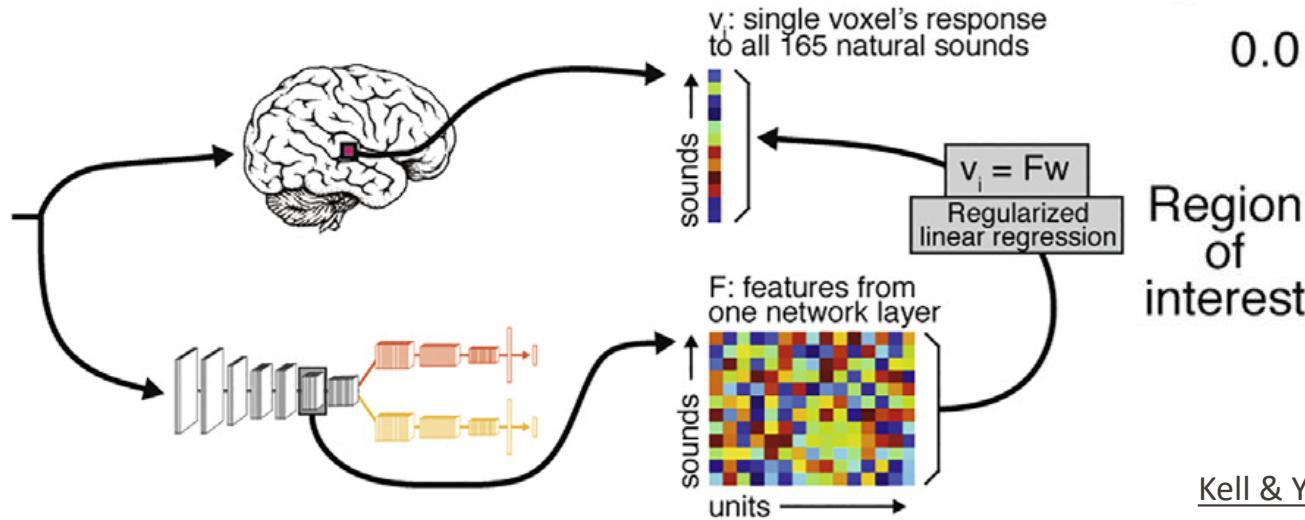
Task-optimized audio model predicts fMRI responses

- The task-optimized audio model predicts brain activity in auditory cortex better than baseline models

A

165 everyday sounds:

person screaming
velcro
whistling
frying pan sizzling
alarm clock
cat purring
guitar riff
... etc. ...

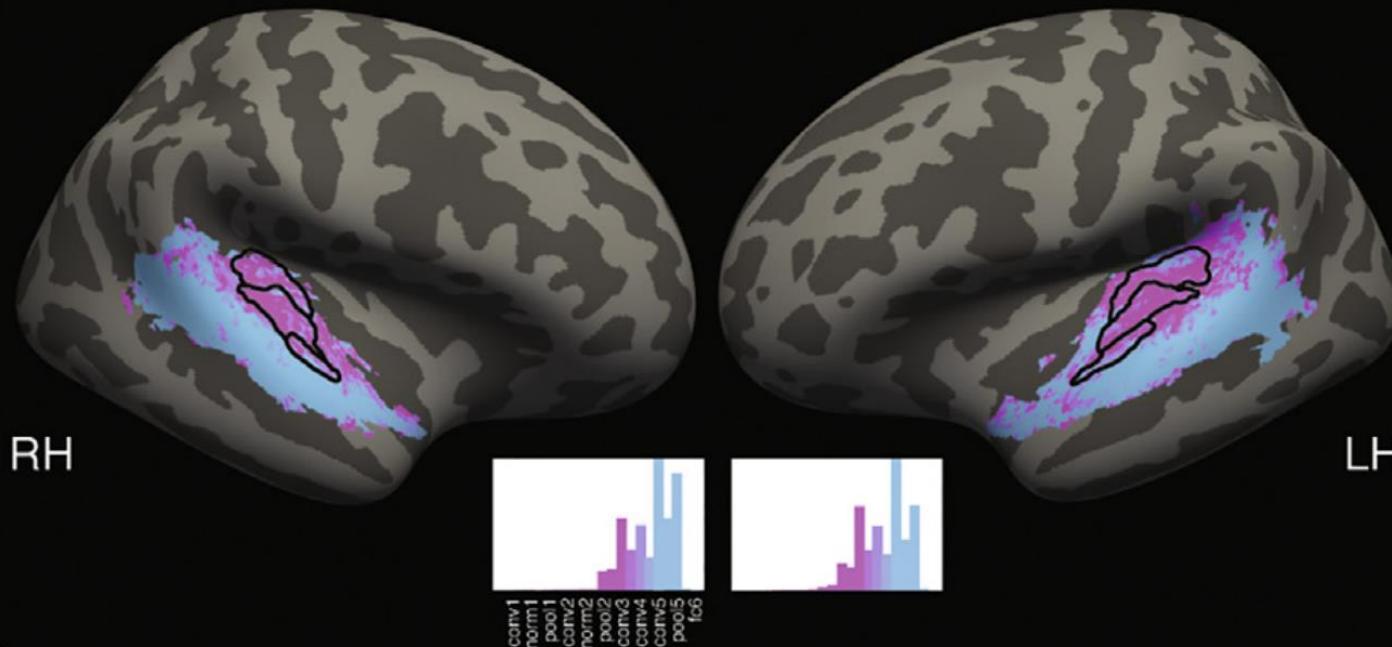


Kell & Yamins et al. 2018

Model Predicts Hierarchical Organization in Human Auditory Cortex

B Best-predicting network layer for each voxel

Layer: conv3 or lower conv4 conv5 or higher



- Black outline: sub-divisions of primary auditory cortex
- Primary auditory cortex best explained by earlier layers
- Later layers best explain non-primary areas

Take-home messages

- Unsupervised training yields brain-like representations
- Including a spatial loss term leads to topographic models that reproduce the spatio-functional organization in the brain. These models can predict the behavioral effects of neural interventions
- Encoding models of brain function allow for the synthesis of images to control neural activity. Can create images akin to adversarial attacks
- Yet, models often view things as identical that appear very different to humans (metamers)
- Very similar ideas from vision work for models of auditory processing