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Biological Intelligence Artificial Intelligence

Hausmann & Marin-Vargas et al., 2021



Information theoretic

e.g. sparse coding, 
redundancy reduction, 
mutual information …

Utilitarian

e.g. recognize objects, 
chase prey, navigate …

Normative frameworks



Vision: object recognition. 
Yamins & Hong et al. (2014), Schrimpf & 
Kubilius et al. (2018)

Audition: speech recognition, speaker & 
sound identification. Kell et al. (2018)

Somatosentation: shape recognition. 
Zhuang et al. (2017) Proprioception: action recognition. 

Sandbrink et al. (2023)

Decision making: context-dependent 
choice. Mante & Sussilo et al. (2013)

Using deep neural networks as goal-driven models of a system

Yamins & DiCarlo (2016) 

Language: next-word prediction. 
Schrimpf et al. (2021)
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Rajalingham*, Issa*, et al. (JNeuro 2018)
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video courtesy of Kailyn Schmidt, MIT
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Neural alignment = alignment between 
stimulus-matched recordings
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Yamins*, Hong*, et al. 2014 Schrimpf*, Kubilius*, et al. 2018

https://www.pnas.org/doi/10.1073/pnas.1403112111
https://www.biorxiv.org/content/10.1101/407007


Model building

Yamins and DiCarlo, Nat Neuro 2016



Large scale architecture search and model 
comparison

Performance for object recognition

Yamins & Hong et al., PNAS 2014



Schrimpf & Kubilius et al. 2018, 2020



100+ brain & behavior benchmarks, 300+ models
e.g. neural predictions for different image sets, distributional alignments such as spatial 
frequency, behavioral generalization, …

www.Brain-Score.org



Recurrent processing in the visual system

Kar et al. 2019

▪ Control images are 
solved quickly

time from image onset
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behavioral accuracy

“face” “zebra” “car” “dog”

…

▪ Challenge images 
require more processing

Tang & Schrimpf & Lotter et al. 2018

Electrode in left fusiform gyrus (face-selective)

http://www.nature.com/articles/s41593-019-0392-5
https://www.pnas.org/doi/10.1073/pnas.1719397115


Modeling recurrence: transform feed-forward 
networks into recurrent models

V1

V2

V4

IT

e.g. ResNet-101

𝑊𝟏,1 𝑊𝟏 ,2 𝑊𝟏 ,3
𝑊𝟏 ,5 𝑊𝟏 ,6 𝑊𝟐 ,1 𝑊𝟐 ,2 𝑊𝟐 ,3

𝑊𝟐 ,11 𝑊𝟐 ,11 𝑊𝟑 ,1 𝑊𝟑 ,2 𝑊𝟑 ,3
𝑊𝟑 ,31 𝑊𝟑 ,32 𝑊𝟒 ,1 𝑊𝟒 ,2 𝑊𝟒 ,3

𝑊𝟒 ,11 𝑊𝟒 ,12𝑊𝟏 ,... 𝑊𝟐 ,...
𝑊𝟑 ,... 𝑊𝟒 ,...



Transform feed-forward networks into 
recurrent models

e.g. He, Zhang, Ren, Sun (CVPR 2016) 
Huang, Liu, van der Maaten, Weinberger (CVPR 2017)

Liang & Hu (CVPR 2015)    Liao & Poggio (arXiv 2016)    Tang*, Schrimpf*, 
Lotter* et al. (PNAS 2018)    Nayebi*, Bear*, Kubilius* et al. (NIPS 2018)

𝑊𝟏 ,1 𝑊𝟏 ,2 𝑊𝟏 ,3
𝑊𝟏 ,5 𝑊𝟏 ,6 𝑊1

𝑊2

𝑊3

𝑊4

𝑊𝟐 ,1 𝑊𝟐 ,2 𝑊𝟐 ,3
𝑊𝟐 ,11 𝑊𝟐 ,11

𝑊𝟑 ,1 𝑊𝟑 ,2 𝑊𝟑 ,3
𝑊𝟑 ,31 𝑊𝟑 ,32

𝑊𝟒 ,1 𝑊𝟒 ,2 𝑊𝟒 ,3
𝑊𝟒 ,11 𝑊𝟒 ,12

𝑊𝟏 ,...

𝑊𝟐 ,...

𝑊𝟑 ,...

𝑊𝟒 ,...

https://arxiv.org/abs/1608.06993


Modeling recurrence: transform feed-forward 
networks into recurrent models: CORnet
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Kubilius*, Schrimpf*, et al. (NeurIPS 2019)
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https://arxiv.org/abs/1608.06993


Recurrent CORnet model: compact architecture 
via recurrence
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Kubilius*, Schrimpf*, et al. (NeurIPS 2019)

https://arxiv.org/abs/1608.06993


time from image onset
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Recurrent model predicts temporal dynamics in IT

Kar, Kubilius, Schmidt, Issa, DiCarlo (Nature Neuroscience 2019)

behavioral accuracy

“face” “zebra” “car” “dog”

… score: 0.3

Kubilius*, Schrimpf*, et al. (NeurIPS 2019)

▪ Unlike feedforward models, 
CORnet-S can predict neural 
responses over time.

▪ i.e., when the brain’s IT is fast to 
process images, CORnet’s IT-
layer is also fast

https://doi.org/10.1038/s41593-019-0392-5
https://arxiv.org/abs/1608.06993


Unsupervised  learning with a contrastive loss

Chen et al. 2020

▪ Unsupervised 
approaches such 
as SimCLR
encourage similar 
representations 
for similar inputs

▪ Performance 
rivals supervised 
learning

https://arxiv.org/abs/2002.05709


▪ When trained on regular computer vision datasets (top) or developmental data streams 
(below, SAYCam), unsupervised models develop brain-like visual representations

Unsupervised models also explain visual brain activity
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Zhuang et al. 2021

https://www.pnas.org/doi/10.1073/pnas.2014196118


Neurons in cortex are topographically organized

Kanwisher et al. 1997

Purves, chapter 11

https://pmc.ncbi.nlm.nih.gov/articles/PMC6573547/pdf/ns004302.pdf


Modeling spatial smoothness with a topographic loss

Lee et al. 2020

▪ A spatial loss term leads to brain-like clusters 
along the visual ventral stream (V1 to IT)

Margalit et al. 2024

https://www.biorxiv.org/content/10.1101/2020.07.09.185116v1
https://www.cell.com/neuron/abstract/S0896-6273(24)00279-4


Topographic models enable the modeling of causal 
interventions, e.g. micro-stimulation
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Schrimpf et al. 2024



Topographic models enable the modeling of causal 
interventions, e.g. micro-stimulation
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Topographic models enable the modeling of causal 
interventions, e.g. micro-stimulation

MODEL PREDICTION BIOLOGICAL DATA (Afraz et al. 2006)

[mm]

Schrimpf et al. 2024



▪ Idea: model is fully differentiable, so we can set a desired target neural 
activity and update pixels in a way that they elicit the target state 
(according to model predictions)

Synthesis  of stimuli for neural population control

Bashivan*, Kar*, DiCarlo 2019

http://www.ncbi.nlm.nih.gov/pubmed/31048462


Model-guided synthesis non-invasively controls 
neural activity

Bashivan*, Kar*, DiCarlo 2019

▪ This procedure 
works!

▪ We can 
generate 
stimuli that 
drive neural 
activity beyond 
the typical 
range

▪ This is a non-
invasive control 
procedure

http://www.ncbi.nlm.nih.gov/pubmed/31048462


Generating “exciting” stimuli without a pre-trained 
encoding model

Walker et al. 2019 Ponce & Xiao & Schade et al. 2019

http://www.nature.com/articles/s41593-019-0517-x
https://www.sciencedirect.com/science/article/pii/S0092867419303915


▪ Models are fooled by small, imperceptible 
perturbations (white box adversarial attacks)

▪ Protection technique: train on adversarial images 
“a versarial training” (very costly) 

Adversarial attacks in computer vision

Szegedy et al. (ICLR 2014)
Eykholt*, Evtimov*, et al. (CVPR 2018)

Graffiti

Image from Dapello*, Marques*, et al. (NeurIPS 2021)

https://nips.cc/virtual/2020/public/poster_98b17f068d5d9b7668e19fb8ae470841.html


▪ Prevalent view: only computational 
models are susceptible to 
adversarial attacks

▪ But: can synthesize images that 
also fool IT neurons

Adversarial attacks on the brain

Guo et al. 2022 

https://proceedings.mlr.press/v162/guo22d.html


▪ Using a robustified model (trained with adversarial attacks), can 
change images in a way that change the decision of humans

Adversarial attacks on behavior

Gaziv*, Lee*, DiCarlo 2023

https://proceedings.neurips.cc/paper_files/paper/2023/hash/d00904cebc0d5b69fada8ad33d0f1422-Abstract-Conference.html


Adversarial attacks on behavior

Gaziv*, Lee*, 
DiCarlo 2023

https://proceedings.neurips.cc/paper_files/paper/2023/hash/d00904cebc0d5b69fada8ad33d0f1422-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d00904cebc0d5b69fada8ad33d0f1422-Abstract-Conference.html


▪ Mo el metamers: “stimuli whose activations within a mo el stage are 
matche  to those of a natural stimulus”

Metamers

Feather et al. 2023

https://www.nature.com/articles/s41593-023-01442-0


Metamers of 
standard 
models are not 
recognizable by 
humans

Feather et al. 2023

https://www.nature.com/articles/s41593-023-01442-0


Adversarial training makes metamers human-recognizable

Feather et al. 2023

https://www.nature.com/articles/s41593-023-01442-0


Kell & Yamins et al. 2018

Models of auditory processing ▪ Jointly optimize CNN for word + 
genre recognition tasks

https://www.sciencedirect.com/science/article/pii/S0896627318302502


▪ Model closely 
predicts human 
performance 
patterns, 
especially for 
word recognition 
tasks

▪ Less 
behaviorally-
aligned for genre 
recognition

Kell & Yamins et al. 2018

Task-optimized model exhibits human-like behavior 

https://www.sciencedirect.com/science/article/pii/S0896627318302502


▪ The task-optimized audio model 
predicts brain activity in auditory 
cortex better than baseline models

Task-optimized audio model predicts fMRI responses

Kell & Yamins et al. 2018

https://www.sciencedirect.com/science/article/pii/S0896627318302502


▪ Black outline: 
sub-divisions 
of primary 
auditory cortex

▪ Primary 
auditory cortex 
best explained 
by earlier 
layers

▪ Later layers 
best explain 
non-primary 
areas

Model Predicts Hierarchical Organization 
in Human Auditory Cortex

Kell & Yamins et al. 2018

https://www.sciencedirect.com/science/article/pii/S0896627318302502


• Unsupervised training yields brain-like representations

• Including a spatial loss term leads to topographic models that reproduce the spatio-

functional organization in the brain. These models can predict the behavioral effects 

of neural interventions

• Encoding models of brain function allow for the synthesis of images to control neural 

activity. Can create images akin to adversarial attacks

• Yet, models often view things as identical that appear very different to humans 

(metamers)

• Very similar ideas from vision work for models of auditory processing

Take-home messages
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